Pattern rigidity and the Hilbert–Smith conjecture
Geometry & topology, Tome 16 (2012) no. 2, pp. 1205-1246.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We initiate a study of the topological group PPQI(G,H) of pattern-preserving quasi-isometries for G a hyperbolic Poincaré duality group and H an infinite quasiconvex subgroup of infinite index in G. Suppose G admits a visual metric d with dimhaus < dimt + 2, where dimhaus is the Hausdorff dimension and dimt is the topological dimension of (G,d). Equivalently suppose that ACD(G) < dimt + 2, where ACD(G) denotes the Ahlfors regular conformal dimension of G.

We find analogous results in the realm of relative hyperbolicity, regarding an equivariant collection of horoballs as a symmetric pattern in the universal cover of a complete finite volume noncompact manifold of pinched negative curvature. Our main result combined with a theorem of Mosher, Sageev and Whyte gives QI rigidity results.

An important ingredient of the proof is a version of the Hilbert–Smith conjecture for certain metric measure spaces, which uses the full strength of Yang’s theorem on actions of the p-adic integers on homology manifolds. This might be of independent interest.

DOI : 10.2140/gt.2012.16.1205
Classification : 20F67, 57M50, 22E40
Keywords: metric measure space, hyperbolic group, homology manifold, conformal dimension, codimension one subgroup, Hilbert–Smith conjecture, pattern rigidity, Poincaré duality group

Mj, Mahan 1

1 School of Mathematical Sciences, RKM Vivekananda University, PO Belur Math, Dt Howrah WB-711202, India
@article{GT_2012_16_2_a12,
     author = {Mj, Mahan},
     title = {Pattern rigidity and the {Hilbert{\textendash}Smith} conjecture},
     journal = {Geometry & topology},
     pages = {1205--1246},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2012},
     doi = {10.2140/gt.2012.16.1205},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1205/}
}
TY  - JOUR
AU  - Mj, Mahan
TI  - Pattern rigidity and the Hilbert–Smith conjecture
JO  - Geometry & topology
PY  - 2012
SP  - 1205
EP  - 1246
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1205/
DO  - 10.2140/gt.2012.16.1205
ID  - GT_2012_16_2_a12
ER  - 
%0 Journal Article
%A Mj, Mahan
%T Pattern rigidity and the Hilbert–Smith conjecture
%J Geometry & topology
%D 2012
%P 1205-1246
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1205/
%R 10.2140/gt.2012.16.1205
%F GT_2012_16_2_a12
Mj, Mahan. Pattern rigidity and the Hilbert–Smith conjecture. Geometry & topology, Tome 16 (2012) no. 2, pp. 1205-1246. doi : 10.2140/gt.2012.16.1205. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1205/

[1] J Behrstock, C Druţu, L Mosher, Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity, Math. Ann. 344 (2009) 543

[2] N Bergeron, D Wise, A boundary criterion for cubulation

[3] M Bestvina, Local homology properties of boundaries of groups, Michigan Math. J. 43 (1996) 123

[4] M Bestvina, G Mess, The boundary of negatively curved groups, J. Amer. Math. Soc. 4 (1991) 469

[5] C J Bishop, P W Jones, Hausdorff dimension and Kleinian groups, Acta Math. 179 (1997) 1

[6] K Biswas, Flows, fixed points and rigidity in Kleinian groups, to appear in Geom. Funct. Anal.

[7] K Biswas, M Mj, Pattern rigidity in hyperbolic spaces: duality and PD subgroups, Groups Geom. Dyn. 6 (2012) 97

[8] M Bonk, B Kleiner, Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math. 150 (2002) 127

[9] M Bonk, O Schramm, Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000) 266

[10] M Bourdon, H Pajot, Cohomologie $l_p$ et espaces de Besov, J. Reine Angew. Math. 558 (2003) 85

[11] B H Bowditch, Cut points and canonical splittings of hyperbolic groups, Acta Math. 180 (1998) 145

[12] B H Bowditch, A topological characterisation of hyperbolic groups, J. Amer. Math. Soc. 11 (1998) 643

[13] G E Bredon, Orientation in generalized manifolds and applications to the theory of transformation groups, Michigan Math. J. 7 (1960) 35

[14] G E Bredon, Introduction to compact transformation groups, Pure and Applied Math. 46, Academic Press (1972)

[15] G E Bredon, Sheaf theory, Graduate Texts in Math. 170, Springer (1997)

[16] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundl. Math. Wissen. 319, Springer (1999)

[17] K S Brown, Cohomology of groups, Graduate Texts in Math. 87, Springer (1994)

[18] S Buyalo, V Schroeder, Elements of asymptotic geometry, EMS Monogr. in Math., European Math. Soc. (2007)

[19] A J Casson, S A Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London Math. Soc. Student Texts 9, Cambridge Univ. Press (1988)

[20] R R Coifman, G Weiss, Analyse harmonique non-commutative sur certains espaces homogènes: Étude de certaines intégrales singulières, Lecture Notes in Math. 42, Springer (1971)

[21] P E Conner, E E Floyd, A characterization of generalized manifolds, Michigan Math. J. 6 (1959) 33

[22] M Coornaert, Mesures de Patterson–Sullivan sur le bord d'un espace hyperbolique au sens de Gromov, Pacific J. Math. 159 (1993) 241

[23] M W Davis, Poincaré duality groups, from: "Surveys on surgery theory, Vol. 1" (editors S Cappell, A Ranicki, J Rosenberg), Ann. of Math. Stud. 145, Princeton Univ. Press (2000) 167

[24] M W Davis, T Januszkiewicz, Hyperbolization of polyhedra, J. Differential Geom. 34 (1991) 347

[25] K J Falconer, Dimensions and measures of quasi self-similar sets, Proc. Amer. Math. Soc. 106 (1989) 543

[26] B Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998) 810

[27] É Ghys, P De La Harpe, editors, Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Math. 83, Birkhäuser (1990)

[28] R Gitik, M Mitra, E Rips, M Sageev, Widths of subgroups, Trans. Amer. Math. Soc. 350 (1998) 321

[29] A M Gleason, Groups without small subgroups, Ann. of Math. 56 (1952) 193

[30] M Gromov, Hyperbolic groups, from: "Essays in group theory" (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[31] M Gromov, Asymptotic invariants of infinite groups, from: "Geometric group theory, Vol. 2 (Sussex, 1991)" (editors G A Niblo, M A Roller), London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press (1993) 1

[32] M Gromov, personal communication (2009)

[33] M Gromov, W Thurston, Pinching constants for hyperbolic manifolds, Invent. Math. 89 (1987) 1

[34] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002)

[35] J Heinonen, Lectures on analysis on metric spaces, Universitext, Springer (2001)

[36] E Hewitt, K A Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Grundl. Mathl. Wissen. 115, Academic Press (1963)

[37] J G Hocking, G S Young, Topology, Addison-Wesley (1961)

[38] T Iwaniec, G Martin, Geometric function theory and non-linear analysis, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press (2001)

[39] M Kapovich, B Kleiner, Hyperbolic groups with low-dimensional boundary, Ann. Sci. École Norm. Sup. 33 (2000) 647

[40] S Lefschetz, Topics in Topology, Annals of Math. Studies 10, Princeton Univ. Press (1942)

[41] J Luukkainen, E Saksman, Every complete doubling metric space carries a doubling measure, Proc. Amer. Math. Soc. 126 (1998) 531

[42] G J Martin, The Hilbert–Smith conjecture for quasiconformal actions, Electron. Res. Announc. Amer. Math. Soc. 5 (1999) 66

[43] J Milnor, On the Steenrod homology theory, from: "Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993)" (editors S C Ferry, A Ranicki, J Rosenberg), London Math. Soc. Lecture Note Ser. 226, Cambridge Univ. Press (1995) 79

[44] M Mj, Relative rigidity, quasiconvexity and $C$–complexes, Algebr. Geom. Topol. 8 (2008) 1691

[45] D Montgomery, L Zippin, Topological transformation groups, Interscience (1955)

[46] L Mosher, M Sageev, K Whyte, Quasi-actions on trees II: Finite depth Bass–Serre trees, Mem. Amer. Math. Soc. 214 (2011)

[47] G D Mostow, Y T Siu, A compact Kähler surface of negative curvature not covered by the ball, Ann. of Math. 112 (1980) 321

[48] M H A Newman, A theorem on periodic transformation of spaces, Quart. J. Math. Oxford Ser. (2) 2 (1931) 1

[49] P Pansu, Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 (1989) 1

[50] F Paulin, Un groupe hyperbolique est déterminé par son bord, J. London Math. Soc. 54 (1996) 50

[51] F Paulin, On the critical exponent of a discrete group of hyperbolic isometries, Differential Geom. Appl. 7 (1997) 231

[52] F Raymond, R L Wilder's work on generalized manifolds—an appreciation, from: "Algebraic and geometric topology (Proc. Sympos., Univ. California, Santa Barbara, CA, 1977)" (editor K C Millett), Lecture Notes in Math. 664, Springer (1978) 7

[53] F Raymond, R F Williams, Examples of $p$–adic transformation groups, Ann. of Math. 78 (1963) 92

[54] D Repovs, E Scepin, A proof of the Hilbert–Smith conjecture for actions by Lipschitz maps, Math. Ann. 308 (1997) 361

[55] M Sageev, Ends of group pairs and non-positively curved cube complexes, Proc. London Math. Soc. 71 (1995) 585

[56] R E Schwartz, The quasi-isometry classification of rank one lattices, Inst. Hautes Études Sci. Publ. Math. (1995) 133

[57] R E Schwartz, Symmetric patterns of geodesics and automorphisms of surface groups, Invent. Math. 128 (1997) 177

[58] P Scott, G A Swarup, Regular neighbourhoods and canonical decompositions for groups, Astérisque 289, Soc. Math. France (2003)

[59] P A Smith, Transformations of finite period. III: Newman's theorem, Ann. of Math. 42 (1941) 446

[60] D Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. (1979) 171

[61] D Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984) 259

[62] G A Swarup, On the cut point conjecture, Electron. Res. Announc. Amer. Math. Soc. 2 (1996) 98

[63] E L Swenson, On Axiom H, Michigan Math. J. 46 (1999) 3

[64] J Väisälä, Gromov hyperbolic spaces, Expo. Math. 23 (2005) 187

[65] H Yamabe, On the conjecture of Iwasawa and Gleason, Ann. of Math. 58 (1953) 48

[66] C T Yang, Transformation groups on a homological manifold, Trans. Amer. Math. Soc. 87 (1958) 261

[67] C T Yang, $p$–adic transformation groups, Michigan Math. J. 7 (1960) 201

Cité par Sources :