Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We initiate a study of the topological group of pattern-preserving quasi-isometries for a hyperbolic Poincaré duality group and an infinite quasiconvex subgroup of infinite index in . Suppose admits a visual metric with , where is the Hausdorff dimension and is the topological dimension of . Equivalently suppose that , where denotes the Ahlfors regular conformal dimension of .
We find analogous results in the realm of relative hyperbolicity, regarding an equivariant collection of horoballs as a symmetric pattern in the universal cover of a complete finite volume noncompact manifold of pinched negative curvature. Our main result combined with a theorem of Mosher, Sageev and Whyte gives QI rigidity results.
An important ingredient of the proof is a version of the Hilbert–Smith conjecture for certain metric measure spaces, which uses the full strength of Yang’s theorem on actions of the p-adic integers on homology manifolds. This might be of independent interest.
Mj, Mahan 1
@article{GT_2012_16_2_a12, author = {Mj, Mahan}, title = {Pattern rigidity and the {Hilbert{\textendash}Smith} conjecture}, journal = {Geometry & topology}, pages = {1205--1246}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2012}, doi = {10.2140/gt.2012.16.1205}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1205/} }
Mj, Mahan. Pattern rigidity and the Hilbert–Smith conjecture. Geometry & topology, Tome 16 (2012) no. 2, pp. 1205-1246. doi : 10.2140/gt.2012.16.1205. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1205/
[1] Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity, Math. Ann. 344 (2009) 543
, , ,[2] A boundary criterion for cubulation
, ,[3] Local homology properties of boundaries of groups, Michigan Math. J. 43 (1996) 123
,[4] The boundary of negatively curved groups, J. Amer. Math. Soc. 4 (1991) 469
, ,[5] Hausdorff dimension and Kleinian groups, Acta Math. 179 (1997) 1
, ,[6] Flows, fixed points and rigidity in Kleinian groups, to appear in Geom. Funct. Anal.
,[7] Pattern rigidity in hyperbolic spaces: duality and PD subgroups, Groups Geom. Dyn. 6 (2012) 97
, ,[8] Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math. 150 (2002) 127
, ,[9] Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000) 266
, ,[10] Cohomologie $l_p$ et espaces de Besov, J. Reine Angew. Math. 558 (2003) 85
, ,[11] Cut points and canonical splittings of hyperbolic groups, Acta Math. 180 (1998) 145
,[12] A topological characterisation of hyperbolic groups, J. Amer. Math. Soc. 11 (1998) 643
,[13] Orientation in generalized manifolds and applications to the theory of transformation groups, Michigan Math. J. 7 (1960) 35
,[14] Introduction to compact transformation groups, Pure and Applied Math. 46, Academic Press (1972)
,[15] Sheaf theory, Graduate Texts in Math. 170, Springer (1997)
,[16] Metric spaces of non-positive curvature, Grundl. Math. Wissen. 319, Springer (1999)
, ,[17] Cohomology of groups, Graduate Texts in Math. 87, Springer (1994)
,[18] Elements of asymptotic geometry, EMS Monogr. in Math., European Math. Soc. (2007)
, ,[19] Automorphisms of surfaces after Nielsen and Thurston, London Math. Soc. Student Texts 9, Cambridge Univ. Press (1988)
, ,[20] Analyse harmonique non-commutative sur certains espaces homogènes: Étude de certaines intégrales singulières, Lecture Notes in Math. 42, Springer (1971)
, ,[21] A characterization of generalized manifolds, Michigan Math. J. 6 (1959) 33
, ,[22] Mesures de Patterson–Sullivan sur le bord d'un espace hyperbolique au sens de Gromov, Pacific J. Math. 159 (1993) 241
,[23] Poincaré duality groups, from: "Surveys on surgery theory, Vol. 1" (editors S Cappell, A Ranicki, J Rosenberg), Ann. of Math. Stud. 145, Princeton Univ. Press (2000) 167
,[24] Hyperbolization of polyhedra, J. Differential Geom. 34 (1991) 347
, ,[25] Dimensions and measures of quasi self-similar sets, Proc. Amer. Math. Soc. 106 (1989) 543
,[26] Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998) 810
,[27] Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Math. 83, Birkhäuser (1990)
, , editors,[28] Widths of subgroups, Trans. Amer. Math. Soc. 350 (1998) 321
, , , ,[29] Groups without small subgroups, Ann. of Math. 56 (1952) 193
,[30] Hyperbolic groups, from: "Essays in group theory" (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75
,[31] Asymptotic invariants of infinite groups, from: "Geometric group theory, Vol. 2 (Sussex, 1991)" (editors G A Niblo, M A Roller), London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press (1993) 1
,[32]
, personal communication (2009)[33] Pinching constants for hyperbolic manifolds, Invent. Math. 89 (1987) 1
, ,[34] Algebraic topology, Cambridge Univ. Press (2002)
,[35] Lectures on analysis on metric spaces, Universitext, Springer (2001)
,[36] Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Grundl. Mathl. Wissen. 115, Academic Press (1963)
, ,[37] Topology, Addison-Wesley (1961)
, ,[38] Geometric function theory and non-linear analysis, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press (2001)
, ,[39] Hyperbolic groups with low-dimensional boundary, Ann. Sci. École Norm. Sup. 33 (2000) 647
, ,[40] Topics in Topology, Annals of Math. Studies 10, Princeton Univ. Press (1942)
,[41] Every complete doubling metric space carries a doubling measure, Proc. Amer. Math. Soc. 126 (1998) 531
, ,[42] The Hilbert–Smith conjecture for quasiconformal actions, Electron. Res. Announc. Amer. Math. Soc. 5 (1999) 66
,[43] On the Steenrod homology theory, from: "Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993)" (editors S C Ferry, A Ranicki, J Rosenberg), London Math. Soc. Lecture Note Ser. 226, Cambridge Univ. Press (1995) 79
,[44] Relative rigidity, quasiconvexity and $C$–complexes, Algebr. Geom. Topol. 8 (2008) 1691
,[45] Topological transformation groups, Interscience (1955)
, ,[46] Quasi-actions on trees II: Finite depth Bass–Serre trees, Mem. Amer. Math. Soc. 214 (2011)
, , ,[47] A compact Kähler surface of negative curvature not covered by the ball, Ann. of Math. 112 (1980) 321
, ,[48] A theorem on periodic transformation of spaces, Quart. J. Math. Oxford Ser. (2) 2 (1931) 1
,[49] Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 (1989) 1
,[50] Un groupe hyperbolique est déterminé par son bord, J. London Math. Soc. 54 (1996) 50
,[51] On the critical exponent of a discrete group of hyperbolic isometries, Differential Geom. Appl. 7 (1997) 231
,[52] R L Wilder's work on generalized manifolds—an appreciation, from: "Algebraic and geometric topology (Proc. Sympos., Univ. California, Santa Barbara, CA, 1977)" (editor K C Millett), Lecture Notes in Math. 664, Springer (1978) 7
,[53] Examples of $p$–adic transformation groups, Ann. of Math. 78 (1963) 92
, ,[54] A proof of the Hilbert–Smith conjecture for actions by Lipschitz maps, Math. Ann. 308 (1997) 361
, ,[55] Ends of group pairs and non-positively curved cube complexes, Proc. London Math. Soc. 71 (1995) 585
,[56] The quasi-isometry classification of rank one lattices, Inst. Hautes Études Sci. Publ. Math. (1995) 133
,[57] Symmetric patterns of geodesics and automorphisms of surface groups, Invent. Math. 128 (1997) 177
,[58] Regular neighbourhoods and canonical decompositions for groups, Astérisque 289, Soc. Math. France (2003)
, ,[59] Transformations of finite period. III: Newman's theorem, Ann. of Math. 42 (1941) 446
,[60] The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. (1979) 171
,[61] Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984) 259
,[62] On the cut point conjecture, Electron. Res. Announc. Amer. Math. Soc. 2 (1996) 98
,[63] On Axiom H, Michigan Math. J. 46 (1999) 3
,[64] Gromov hyperbolic spaces, Expo. Math. 23 (2005) 187
,[65] On the conjecture of Iwasawa and Gleason, Ann. of Math. 58 (1953) 48
,[66] Transformation groups on a homological manifold, Trans. Amer. Math. Soc. 87 (1958) 261
,[67] $p$–adic transformation groups, Michigan Math. J. 7 (1960) 201
,Cité par Sources :