The Dirichlet Problem for constant mean curvature graphs in 𝕄 × ℝ
Geometry & topology, Tome 16 (2012) no. 2, pp. 1171-1203.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study graphs of constant mean curvature H > 0 in M × for M a Hadamard surface, ie a complete simply connected surface with curvature bounded above by a negative constant a. We find necessary and sufficient conditions for the existence of these graphs over bounded domains in M, having prescribed boundary data, possibly infinite.

DOI : 10.2140/gt.2012.16.1171
Classification : 53A10, 53C42
Keywords: Hadamard surface, constant mean curvature, Dirichlet problem

Folha, Abigail 1 ; Rosenberg, Harold 2

1 Instituto de Matemática – Departamento de Geometria, Universidade Federal Fluminense, R Mário Santos Braga, s/n, Campus do Valonguinho, CEP 24020-140 Niterói, RJ, Brazil
2 Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, CEP 22460-320 Rio de Janeiro, RJ, Brazil
@article{GT_2012_16_2_a11,
     author = {Folha, Abigail and Rosenberg, Harold},
     title = {The {Dirichlet} {Problem} for constant mean curvature graphs in {\ensuremath{\mathbb{M}}} {\texttimes} {\ensuremath{\mathbb{R}}}},
     journal = {Geometry & topology},
     pages = {1171--1203},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2012},
     doi = {10.2140/gt.2012.16.1171},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1171/}
}
TY  - JOUR
AU  - Folha, Abigail
AU  - Rosenberg, Harold
TI  - The Dirichlet Problem for constant mean curvature graphs in 𝕄 × ℝ
JO  - Geometry & topology
PY  - 2012
SP  - 1171
EP  - 1203
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1171/
DO  - 10.2140/gt.2012.16.1171
ID  - GT_2012_16_2_a11
ER  - 
%0 Journal Article
%A Folha, Abigail
%A Rosenberg, Harold
%T The Dirichlet Problem for constant mean curvature graphs in 𝕄 × ℝ
%J Geometry & topology
%D 2012
%P 1171-1203
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1171/
%R 10.2140/gt.2012.16.1171
%F GT_2012_16_2_a11
Folha, Abigail; Rosenberg, Harold. The Dirichlet Problem for constant mean curvature graphs in 𝕄 × ℝ. Geometry & topology, Tome 16 (2012) no. 2, pp. 1171-1203. doi : 10.2140/gt.2012.16.1171. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1171/

[1] P Collin, H Rosenberg, Construction of harmonic diffeomorphisms and minimal graphs, Ann. of Math. 172 (2010) 1879

[2] A Folha, S Melo, The Dirichlet problem for constant mean curvature graphs in $\mathbb{H}\times\mathbb{R}$ over unbounded domains, Pacific J. Math. 251 (2011) 37

[3] J A Gálvez, H Rosenberg, Minimal surfaces and harmonic diffeomorphisms from the complex plane onto certain Hadamard surfaces, Amer. J. Math. 132 (2010) 1249

[4] D Gilbarg, N S Trudinger, Elliptic partial differential equations of second order, Grundl. Math. Wissen. 224, Springer (1983)

[5] L Hauswirth, H Rosenberg, J Spruck, Infinite boundary value problems for constant mean curvature graphs in $\mathbb{H}^2\times\mathbb{R}$ and $\mathbb{S}^2\times\mathbb{R}$, Amer. J. Math. 131 (2009) 195

[6] H Jenkins, J Serrin, Variational problems of minimal surface type. I, Arch. Rational mech. Anal. 12 (1963) 185

[7] H Jenkins, J Serrin, Variational problems of minimal surface type II. Boundary value problems for the minimal surface equation, Arch. Rational Mech. Anal. 21 (1966) 321

[8] F Labourie, Un lemme de Morse pour les surfaces convexes, Invent. Math. 141 (2000) 239

[9] Y Li, L Nirenberg, Regularity of the distance function to the boundary, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 29 (2005) 257

[10] L Mazet, M M Rodríguez, H Rosenberg, The Dirichlet problem for the minimal surface equation, with possible infinite boundary data, over domains in a Riemannian surface, Proc. Lond. Math. Soc. 102 (2011) 985

[11] B Nelli, H Rosenberg, Minimal surfaces in $\mathbb{H}^2\times\mathbb{R}$, Bull. Braz. Math. Soc. 33 (2002) 263

[12] A L Pinheiro, A Jenkins–Serrin theorem in $M^2\times\mathbb{R}$, Bull. Braz. Math. Soc. 40 (2009) 117

[13] H Rosenberg, Hypersurfaces of constant curvature in space forms, Bull. Sci. Math. 117 (1993) 211

[14] H Rosenberg, Minimal surfaces in $\mathbb{M}^2\times\mathbb{R}$, Illinois J. Math. 46 (2002) 1177

[15] H Rosenberg, R Souam, E Toubiana, General curvature estimates for stable \hbox$H$–surfaces in $3$–manifolds and applications, J. Differential Geom. 84 (2010) 623

[16] J Spruck, Infinite boundary value problems for surfaces of constant mean curvature, Arch. Rational Mech. Anal. 49 (1972) 1

[17] J Spruck, Interior gradient estimates and existence theorems for constant mean curvature graphs in $M^n\times R$, Pure Appl. Math. Q. 3 (2007) 785

Cité par Sources :