Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study graphs of constant mean curvature in for a Hadamard surface, ie a complete simply connected surface with curvature bounded above by a negative constant . We find necessary and sufficient conditions for the existence of these graphs over bounded domains in , having prescribed boundary data, possibly infinite.
Folha, Abigail 1 ; Rosenberg, Harold 2
@article{GT_2012_16_2_a11, author = {Folha, Abigail and Rosenberg, Harold}, title = {The {Dirichlet} {Problem} for constant mean curvature graphs in {\ensuremath{\mathbb{M}}} {\texttimes} {\ensuremath{\mathbb{R}}}}, journal = {Geometry & topology}, pages = {1171--1203}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2012}, doi = {10.2140/gt.2012.16.1171}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1171/} }
TY - JOUR AU - Folha, Abigail AU - Rosenberg, Harold TI - The Dirichlet Problem for constant mean curvature graphs in 𝕄 × ℝ JO - Geometry & topology PY - 2012 SP - 1171 EP - 1203 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1171/ DO - 10.2140/gt.2012.16.1171 ID - GT_2012_16_2_a11 ER -
%0 Journal Article %A Folha, Abigail %A Rosenberg, Harold %T The Dirichlet Problem for constant mean curvature graphs in 𝕄 × ℝ %J Geometry & topology %D 2012 %P 1171-1203 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1171/ %R 10.2140/gt.2012.16.1171 %F GT_2012_16_2_a11
Folha, Abigail; Rosenberg, Harold. The Dirichlet Problem for constant mean curvature graphs in 𝕄 × ℝ. Geometry & topology, Tome 16 (2012) no. 2, pp. 1171-1203. doi : 10.2140/gt.2012.16.1171. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1171/
[1] Construction of harmonic diffeomorphisms and minimal graphs, Ann. of Math. 172 (2010) 1879
, ,[2] The Dirichlet problem for constant mean curvature graphs in $\mathbb{H}\times\mathbb{R}$ over unbounded domains, Pacific J. Math. 251 (2011) 37
, ,[3] Minimal surfaces and harmonic diffeomorphisms from the complex plane onto certain Hadamard surfaces, Amer. J. Math. 132 (2010) 1249
, ,[4] Elliptic partial differential equations of second order, Grundl. Math. Wissen. 224, Springer (1983)
, ,[5] Infinite boundary value problems for constant mean curvature graphs in $\mathbb{H}^2\times\mathbb{R}$ and $\mathbb{S}^2\times\mathbb{R}$, Amer. J. Math. 131 (2009) 195
, , ,[6] Variational problems of minimal surface type. I, Arch. Rational mech. Anal. 12 (1963) 185
, ,[7] Variational problems of minimal surface type II. Boundary value problems for the minimal surface equation, Arch. Rational Mech. Anal. 21 (1966) 321
, ,[8] Un lemme de Morse pour les surfaces convexes, Invent. Math. 141 (2000) 239
,[9] Regularity of the distance function to the boundary, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 29 (2005) 257
, ,[10] The Dirichlet problem for the minimal surface equation, with possible infinite boundary data, over domains in a Riemannian surface, Proc. Lond. Math. Soc. 102 (2011) 985
, , ,[11] Minimal surfaces in $\mathbb{H}^2\times\mathbb{R}$, Bull. Braz. Math. Soc. 33 (2002) 263
, ,[12] A Jenkins–Serrin theorem in $M^2\times\mathbb{R}$, Bull. Braz. Math. Soc. 40 (2009) 117
,[13] Hypersurfaces of constant curvature in space forms, Bull. Sci. Math. 117 (1993) 211
,[14] Minimal surfaces in $\mathbb{M}^2\times\mathbb{R}$, Illinois J. Math. 46 (2002) 1177
,[15] General curvature estimates for stable \hbox$H$–surfaces in $3$–manifolds and applications, J. Differential Geom. 84 (2010) 623
, , ,[16] Infinite boundary value problems for surfaces of constant mean curvature, Arch. Rational Mech. Anal. 49 (1972) 1
,[17] Interior gradient estimates and existence theorems for constant mean curvature graphs in $M^n\times R$, Pure Appl. Math. Q. 3 (2007) 785
,Cité par Sources :