Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a tree with an action of a finitely generated group . Given a suitable equivalence relation on the set of edge stabilizers of (such as commensurability, coelementarity in a relatively hyperbolic group, or commutation in a commutative transitive group), we define a tree of cylinders . This tree only depends on the deformation space of ; in particular, it is invariant under automorphisms of if is a JSJ splitting. We thus obtain –invariant cyclic or abelian JSJ splittings. Furthermore, has very strong compatibility properties (two trees are compatible if they have a common refinement).
Guirardel, Vincent 1 ; Levitt, Gilbert 2
@article{GT_2011_15_2_a9, author = {Guirardel, Vincent and Levitt, Gilbert}, title = {Trees of cylinders and canonical splittings}, journal = {Geometry & topology}, pages = {977--1012}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2011}, doi = {10.2140/gt.2011.15.977}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.977/} }
TY - JOUR AU - Guirardel, Vincent AU - Levitt, Gilbert TI - Trees of cylinders and canonical splittings JO - Geometry & topology PY - 2011 SP - 977 EP - 1012 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.977/ DO - 10.2140/gt.2011.15.977 ID - GT_2011_15_2_a9 ER -
Guirardel, Vincent; Levitt, Gilbert. Trees of cylinders and canonical splittings. Geometry & topology, Tome 15 (2011) no. 2, pp. 977-1012. doi : 10.2140/gt.2011.15.977. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.977/
[1] Cut points and canonical splittings of hyperbolic groups, Acta Math. 180 (1998) 145
,[2] The isomorphism problem for finitely generated fully residually free groups, J. Pure Appl. Algebra 208 (2007) 961
, , ,[3] The automorphism group of accessible groups, to appear in J. London Math. Soc.
,[4] L'espace des groupes de type fini, Topology 39 (2000) 657
,[5] Contractibility of deformation spaces of $G$–trees, Algebr. Geom. Topol. 5 (2005) 1481
,[6] Whitehead moves for $G$–trees, Bull. Lond. Math. Soc. 41 (2009) 205
, ,[7] Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986) 91
, ,[8] JSJ–splittings for finitely presented groups over slender groups, Invent. Math. 135 (1999) 25
, ,[9] Deformation and rigidity of simplicial group actions on trees, Geom. Topol. 6 (2002) 219
,[10] On uniqueness of JSJ decompositions of finitely generated groups, Comment. Math. Helv. 78 (2003) 740
,[11] JSJ–decompositions of finitely presented groups and complexes of groups, Geom. Funct. Anal. 16 (2006) 70
, ,[12] Reading small actions of a one-ended hyperbolic group on $\bold R$–trees from its JSJ splitting, Amer. J. Math. 122 (2000) 667
,[13] Limit groups and groups acting freely on $\mathbb R^n$–trees, Geom. Topol. 8 (2004) 1427
,[14] Deformation spaces of trees, Groups Geom. Dyn. 1 (2007) 135
, ,[15] A general construction of JSJ decompositions, from: "Geometric group theory" (editors G Arzhantseva, L Bartholdi, J Burillo, E Ventura), Trends Math., Birkhäuser (2007) 65
, ,[16] Scott and Swarup's regular neighborhood as a tree of cylinders, Pacific J. Math. 245 (2010) 79
, ,[17] JSJ decompositions: definitions, existence and uniqueness. I: The JSJ deformation space
, ,[18] JSJ decompositions: definitions, existence and uniqueness. II: Compatibility and acylindricity
, ,[19] Splittings and automorphisms of relatively hyperbolic groups, in preparation
, ,[20] Automorphisms of hyperbolic groups and graphs of groups, Geom. Dedicata 114 (2005) 49
,[21] Valuations, trees, and degenerations of hyperbolic structures. I, Ann. of Math. $(2)$ 120 (1984) 401
, ,[22] Elementary subgroups of relatively hyperbolic groups and bounded generation, Internat. J. Algebra Comput. 16 (2006) 99
,[23] Boundaries and JSJ decompositions of $\mathrm{CAT}(0)$–groups, Geom. Funct. Anal. 19 (2009) 559
, ,[24] Sur la théorie élémentaire des groupes libres (d'après Sela), Astérisque 294, Soc. Math. France (2004) 363
,[25] Cyclic splittings of finitely presented groups and the canonical JSJ decomposition, Ann. of Math. $(2)$ 146 (1997) 53
, ,[26] Regular neighbourhoods and canonical decompositions for groups, Astérisque 289, Soc. Math. France (2003)
, ,[27] Acylindrical accessibility for groups, Invent. Math. 129 (1997) 527
,[28] Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank $1$ Lie groups. II, Geom. Funct. Anal. 7 (1997) 561
,[29] Diophantine geometry over groups. VII. The elementary theory of a hyperbolic group, Proc. Lond. Math. Soc. $(3)$ 99 (2009) 217
,Cité par Sources :