Ricci flow on open 3–manifolds and positive scalar curvature
Geometry & topology, Tome 15 (2011) no. 2, pp. 927-975.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that an orientable 3–dimensional manifold M admits a complete riemannian metric of bounded geometry and uniformly positive scalar curvature if and only if there exists a finite collection of spherical space-forms such that M is a (possibly infinite) connected sum where each summand is diffeomorphic to S2 × S1 or to some member of . This result generalises G Perelman’s classification theorem for compact 3–manifolds of positive scalar curvature. The main tool is a variant of Perelman’s surgery construction for Ricci flow.

DOI : 10.2140/gt.2011.15.927
Keywords: Ricci flow, three-dimensional topology

Bessières, Laurent 1 ; Besson, Gérard 1 ; Maillot, Sylvain 2

1 Institut Fourier, UMR CNRS 5582 Université de Grenoble I, BP 74, 100 rue des maths, 38402 Saint Martin d’Hères, France
2 Institut de Mathématiques et de Modélisation de Montpellier (I3M), UMR CNRS 5149 Université Montpellier 2, Case Courrier 051, Place Eugène Bataillon, 34095 Montpellier, France
@article{GT_2011_15_2_a8,
     author = {Bessi\`eres, Laurent and Besson, G\'erard and Maillot, Sylvain},
     title = {Ricci flow on open 3{\textendash}manifolds and positive scalar curvature},
     journal = {Geometry & topology},
     pages = {927--975},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2011},
     doi = {10.2140/gt.2011.15.927},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.927/}
}
TY  - JOUR
AU  - Bessières, Laurent
AU  - Besson, Gérard
AU  - Maillot, Sylvain
TI  - Ricci flow on open 3–manifolds and positive scalar curvature
JO  - Geometry & topology
PY  - 2011
SP  - 927
EP  - 975
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.927/
DO  - 10.2140/gt.2011.15.927
ID  - GT_2011_15_2_a8
ER  - 
%0 Journal Article
%A Bessières, Laurent
%A Besson, Gérard
%A Maillot, Sylvain
%T Ricci flow on open 3–manifolds and positive scalar curvature
%J Geometry & topology
%D 2011
%P 927-975
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.927/
%R 10.2140/gt.2011.15.927
%F GT_2011_15_2_a8
Bessières, Laurent; Besson, Gérard; Maillot, Sylvain. Ricci flow on open 3–manifolds and positive scalar curvature. Geometry & topology, Tome 15 (2011) no. 2, pp. 927-975. doi : 10.2140/gt.2011.15.927. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.927/

[1] L Bessières, G Besson, S Maillot, M Boileau, J Porti, Geometrisation of $3$–manifolds, EMS Tracts in Math. 13, Eur. Math. Soc. (2010)

[2] S Chang, S Weinberger, G Yu, Taming $3$–manifolds using scalar curvature, Geom. Dedicata 148 (2010) 3

[3] J Cheeger, Finiteness theorems for Riemannian manifolds, Amer. J. Math. 92 (1970) 61

[4] B L Chen, S H Tang, X P Zhu, Complete classification of compact four-manifolds with positive isotropic curvature

[5] B L Chen, X P Zhu, Uniqueness of the Ricci flow on complete noncompact manifolds, J. Differential Geom. 74 (2006) 119

[6] B Chow, S C Chu, D Glickenstein, C Guenther, J Isenberg, T Ivey, D Knopf, P Lu, F Luo, L Ni, The Ricci flow: techniques and applications. Part II: Analytic aspects, Math. Surveys and Monogr. 144, Amer. Math. Soc. (2008)

[7] B Chow, P Lu, L Ni, Hamilton's Ricci flow, Graduate Studies in Math. 77, Amer. Math. Soc. (2006)

[8] J Dinkelbach, B Leeb, Equivariant Ricci flow with surgery and applications to finite group actions on geometric $3$–manifolds, Geom. Topol. 13 (2009) 1129

[9] M Gromov, Sign and geometric meaning of curvature, Rend. Sem. Mat. Fis. Milano 61 (1991)

[10] M Gromov, H B Lawson Jr., Spin and scalar curvature in the presence of a fundamental group. I, Ann. of Math. $(2)$ 111 (1980) 209

[11] M Gromov, H B Lawson Jr., Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math. (1983) 83

[12] R S Hamilton, Four-manifolds with positive isotropic curvature, Comm. Anal. Geom. 5 (1997) 1

[13] H Huang, Complete $4$–manifolds with uniformly positive isotropic curvature

[14] G Huisken, C Sinestrari, Mean curvature flow with surgeries of two-convex hypersurfaces, Invent. Math. 175 (2009) 137

[15] B Kleiner, J Lott, Notes on Perelman's papers, Geom. Topol. 12 (2008) 2587

[16] H Kneser, Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten, Jahresbericht D. M. V. 38 (1929) 24

[17] S Maillot, A spherical decomposition for Riemannian open $3$–manifolds, Geom. Funct. Anal. 17 (2007) 839

[18] S Maillot, Some open $3$–manifolds and $3$–orbifolds without locally finite canonical decompositions, Algebr. Geom. Topol. 8 (2008) 1795

[19] J Morgan, G Tian, Ricci flow and the Poincaré conjecture, Clay Math. Monogr. 3, Amer. Math. Soc. (2007)

[20] G Perelman, The entropy formula for the Ricci flow and its geometric applications

[21] G Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds

[22] G Perelman, Ricci flow with surgery on three-manifolds

[23] J Rosenberg, Manifolds of positive scalar curvature: a progress report, from: "Surveys in differential geometry. Vol. XI" (editors J Cheeger, K Grove), Surv. Differ. Geom. 11, Int. Press (2007) 259

[24] R Schoen, S T Yau, Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature, Ann. of Math. $(2)$ 110 (1979) 127

[25] P Scott, The geometries of $3$–manifolds, Bull. London Math. Soc. 15 (1983) 401

[26] P Scott, T Tucker, Some examples of exotic noncompact $3$–manifolds, Quart. J. Math. Oxford Ser. $(2)$ 40 (1989) 481

[27] W X Shi, Ricci deformation of the metric on complete noncompact Riemannian manifolds, J. Differential Geom. 30 (1989) 303

[28] M Simon, Ricci flow of almost non-negatively curved three manifolds, J. Reine Angew. Math. 630 (2009) 177

[29] S Smale, Diffeomorphisms of the $2$–sphere, Proc. Amer. Math. Soc. 10 (1959) 621

[30] J H C Whitehead, A certain open manifold whose group is unity, Quart. J. Math. Oxford Ser. 6 (1935) 268

[31] G Xu, Short-time existence of the ricci flow on noncompact riemannian manifolds

[32] S T Yau, Problem section, from: "Seminar on Differential Geometry" (editor S T Yau), Ann. of Math. Stud. 102, Princeton Univ. Press (1982) 669

Cité par Sources :