Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that an orientable –dimensional manifold admits a complete riemannian metric of bounded geometry and uniformly positive scalar curvature if and only if there exists a finite collection of spherical space-forms such that is a (possibly infinite) connected sum where each summand is diffeomorphic to or to some member of . This result generalises G Perelman’s classification theorem for compact –manifolds of positive scalar curvature. The main tool is a variant of Perelman’s surgery construction for Ricci flow.
Bessières, Laurent 1 ; Besson, Gérard 1 ; Maillot, Sylvain 2
@article{GT_2011_15_2_a8, author = {Bessi\`eres, Laurent and Besson, G\'erard and Maillot, Sylvain}, title = {Ricci flow on open 3{\textendash}manifolds and positive scalar curvature}, journal = {Geometry & topology}, pages = {927--975}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2011}, doi = {10.2140/gt.2011.15.927}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.927/} }
TY - JOUR AU - Bessières, Laurent AU - Besson, Gérard AU - Maillot, Sylvain TI - Ricci flow on open 3–manifolds and positive scalar curvature JO - Geometry & topology PY - 2011 SP - 927 EP - 975 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.927/ DO - 10.2140/gt.2011.15.927 ID - GT_2011_15_2_a8 ER -
%0 Journal Article %A Bessières, Laurent %A Besson, Gérard %A Maillot, Sylvain %T Ricci flow on open 3–manifolds and positive scalar curvature %J Geometry & topology %D 2011 %P 927-975 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.927/ %R 10.2140/gt.2011.15.927 %F GT_2011_15_2_a8
Bessières, Laurent; Besson, Gérard; Maillot, Sylvain. Ricci flow on open 3–manifolds and positive scalar curvature. Geometry & topology, Tome 15 (2011) no. 2, pp. 927-975. doi : 10.2140/gt.2011.15.927. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.927/
[1] Geometrisation of $3$–manifolds, EMS Tracts in Math. 13, Eur. Math. Soc. (2010)
, , , , ,[2] Taming $3$–manifolds using scalar curvature, Geom. Dedicata 148 (2010) 3
, , ,[3] Finiteness theorems for Riemannian manifolds, Amer. J. Math. 92 (1970) 61
,[4] Complete classification of compact four-manifolds with positive isotropic curvature
, , ,[5] Uniqueness of the Ricci flow on complete noncompact manifolds, J. Differential Geom. 74 (2006) 119
, ,[6] The Ricci flow: techniques and applications. Part II: Analytic aspects, Math. Surveys and Monogr. 144, Amer. Math. Soc. (2008)
, , , , , , , , , ,[7] Hamilton's Ricci flow, Graduate Studies in Math. 77, Amer. Math. Soc. (2006)
, , ,[8] Equivariant Ricci flow with surgery and applications to finite group actions on geometric $3$–manifolds, Geom. Topol. 13 (2009) 1129
, ,[9] Sign and geometric meaning of curvature, Rend. Sem. Mat. Fis. Milano 61 (1991)
,[10] Spin and scalar curvature in the presence of a fundamental group. I, Ann. of Math. $(2)$ 111 (1980) 209
, ,[11] Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math. (1983) 83
, ,[12] Four-manifolds with positive isotropic curvature, Comm. Anal. Geom. 5 (1997) 1
,[13] Complete $4$–manifolds with uniformly positive isotropic curvature
,[14] Mean curvature flow with surgeries of two-convex hypersurfaces, Invent. Math. 175 (2009) 137
, ,[15] Notes on Perelman's papers, Geom. Topol. 12 (2008) 2587
, ,[16] Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten, Jahresbericht D. M. V. 38 (1929) 24
,[17] A spherical decomposition for Riemannian open $3$–manifolds, Geom. Funct. Anal. 17 (2007) 839
,[18] Some open $3$–manifolds and $3$–orbifolds without locally finite canonical decompositions, Algebr. Geom. Topol. 8 (2008) 1795
,[19] Ricci flow and the Poincaré conjecture, Clay Math. Monogr. 3, Amer. Math. Soc. (2007)
, ,[20] The entropy formula for the Ricci flow and its geometric applications
,[21] Finite extinction time for the solutions to the Ricci flow on certain three-manifolds
,[22] Ricci flow with surgery on three-manifolds
,[23] Manifolds of positive scalar curvature: a progress report, from: "Surveys in differential geometry. Vol. XI" (editors J Cheeger, K Grove), Surv. Differ. Geom. 11, Int. Press (2007) 259
,[24] Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature, Ann. of Math. $(2)$ 110 (1979) 127
, ,[25] The geometries of $3$–manifolds, Bull. London Math. Soc. 15 (1983) 401
,[26] Some examples of exotic noncompact $3$–manifolds, Quart. J. Math. Oxford Ser. $(2)$ 40 (1989) 481
, ,[27] Ricci deformation of the metric on complete noncompact Riemannian manifolds, J. Differential Geom. 30 (1989) 303
,[28] Ricci flow of almost non-negatively curved three manifolds, J. Reine Angew. Math. 630 (2009) 177
,[29] Diffeomorphisms of the $2$–sphere, Proc. Amer. Math. Soc. 10 (1959) 621
,[30] A certain open manifold whose group is unity, Quart. J. Math. Oxford Ser. 6 (1935) 268
,[31] Short-time existence of the ricci flow on noncompact riemannian manifolds
,[32] Problem section, from: "Seminar on Differential Geometry" (editor S T Yau), Ann. of Math. Stud. 102, Princeton Univ. Press (1982) 669
,Cité par Sources :