Topological obstructions to fatness
Geometry & topology, Tome 15 (2011) no. 2, pp. 891-925.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Alan Weinstein showed that certain characteristic numbers of any Riemannian submersion with totally geodesic fibers and positive vertizontal curvatures are nonzero. In this paper we explicitly compute these invariants in terms of Chern and Pontrjagin numbers of the bundle. This allows us to show that many bundles do not admit such metrics.

DOI : 10.2140/gt.2011.15.891
Keywords: positive curvature, submersion, fat principle bundle

Florit, Luis A 1 ; Ziller, Wolfgang 2

1 IMPA, Estrada Dona Castorina, 110, 22460-320 Rio de Janeiro, Brazil
2 Department of Mathematics, University of Pennsylvania, 3451 Walnut Street, Philadelphia PA 19104, USA
@article{GT_2011_15_2_a7,
     author = {Florit, Luis~A and Ziller, Wolfgang},
     title = {Topological obstructions to fatness},
     journal = {Geometry & topology},
     pages = {891--925},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2011},
     doi = {10.2140/gt.2011.15.891},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.891/}
}
TY  - JOUR
AU  - Florit, Luis A
AU  - Ziller, Wolfgang
TI  - Topological obstructions to fatness
JO  - Geometry & topology
PY  - 2011
SP  - 891
EP  - 925
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.891/
DO  - 10.2140/gt.2011.15.891
ID  - GT_2011_15_2_a7
ER  - 
%0 Journal Article
%A Florit, Luis A
%A Ziller, Wolfgang
%T Topological obstructions to fatness
%J Geometry & topology
%D 2011
%P 891-925
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.891/
%R 10.2140/gt.2011.15.891
%F GT_2011_15_2_a7
Florit, Luis A; Ziller, Wolfgang. Topological obstructions to fatness. Geometry & topology, Tome 15 (2011) no. 2, pp. 891-925. doi : 10.2140/gt.2011.15.891. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.891/

[1] L Bérard-Bergery, Sur certaines fibrations d'espaces homogènes riemanniens, Compositio Math. 30 (1975) 43

[2] A L Besse, Einstein manifolds, Ergebnisse der Math. und ihrer Grenzgebiete (3) 10, Springer (1987)

[3] A Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. $(2)$ 57 (1953) 115

[4] L M Chaves, A theorem of finiteness for fat bundles, Topology 33 (1994) 493

[5] A Derdziński, A Rigas, Unflat connections in $3$–sphere bundles over $S^{4}$, Trans. Amer. Math. Soc. 265 (1981) 485

[6] M Feshbach, The image of $H^{*} (BG, \mathbf{Z})$ in $H^{*} (BT, \mathbf{Z})$ for $G$ a compact Lie group with maximal torus $T$, Topology 20 (1981) 93

[7] L A Florit, W Ziller, Orbifold fibrations of Eschenburg spaces, Geom. Dedicata 127 (2007) 159

[8] W Fulton, J Harris, Representation theory: A first course, Graduate Texts in Math. 129, Springer (1991)

[9] D Gromoll, G Walschap, Metric foliations and curvature, Progress in Math. 268, Birkhäuser Verlag (2009)

[10] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002)

[11] M Kerin, Some new examples with almost positive curvature, Geom. Topol. 15 (2011) 217

[12] I G Macdonald, Symmetric functions and Hall polynomials, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press (1979)

[13] M Mimura, H Toda, Topology of Lie groups. I, II, Transl. of Math. Monogr. 91, Amer. Math. Soc. (1991)

[14] J D Moore, Submanifolds of constant positive curvature. I, Duke Math. J. 44 (1977) 449

[15] G F Paechter, The groups $\pi _{r}(V_{n, m})$. I, Quart. J. Math. Oxford Ser. $(2)$ 7 (1956) 249

[16] N Shimada, Differentiable structures on the $15$–sphere and Pontrjagin classes of certain manifolds, Nagoya Math. J. 12 (1957) 59

[17] K Tapp, Quasi-positive curvature on homogeneous bundles, J. Differential Geom. 65 (2003) 273

[18] G Warner, Harmonic analysis on semi-simple Lie groups. I, Die Grund. der math. Wissenschaften 188, Springer (1972)

[19] A Weinstein, Fat bundles and symplectic manifolds, Adv. in Math. 37 (1980) 239

[20] B Wilking, Manifolds with positive sectional curvature almost everywhere, Invent. Math. 148 (2002) 117

[21] W Ziller, Fatness revisited, Lecture notes, University of Pennsylvania (2001)

[22] W Ziller, Examples of Riemannian manifolds with non-negative sectional curvature, from: "Surveys in differential geometry. Vol. XI" (editors J Cheeger, K Grove), Surv. Differ. Geom. 11, Int. Press, Somerville, MA (2007) 63

Cité par Sources :