Realising end invariants by limits of minimally parabolic, geometrically finite groups
Geometry & topology, Tome 15 (2011) no. 2, pp. 827-890.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We shall show that for a given homeomorphism type and a set of end invariants (including the parabolic locus) with necessary topological conditions which a topologically tame Kleinian group with that homeomorphism type must satisfy, there is an algebraic limit of minimally parabolic, geometrically finite Kleinian groups which has exactly that homeomorphism type and the given end invariants. This shows that the Bers–Sullivan–Thurston density conjecture follows from Marden’s conjecture proved by Agol and Calegari–Gabai combined with Thurston’s uniformisation theorem and the ending lamination conjecture proved by Minsky, partially collaborating with Masur, Brock and Canary.

DOI : 10.2140/gt.2011.15.827
Keywords: Kleinian group, deformation space, end invariant, Bers–Sullivan–Thurston conjecture

Ohshika, Ken’ichi 1

1 Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
@article{GT_2011_15_2_a6,
     author = {Ohshika, Ken{\textquoteright}ichi},
     title = {Realising end invariants by limits of minimally parabolic, geometrically finite groups},
     journal = {Geometry & topology},
     pages = {827--890},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2011},
     doi = {10.2140/gt.2011.15.827},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.827/}
}
TY  - JOUR
AU  - Ohshika, Ken’ichi
TI  - Realising end invariants by limits of minimally parabolic, geometrically finite groups
JO  - Geometry & topology
PY  - 2011
SP  - 827
EP  - 890
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.827/
DO  - 10.2140/gt.2011.15.827
ID  - GT_2011_15_2_a6
ER  - 
%0 Journal Article
%A Ohshika, Ken’ichi
%T Realising end invariants by limits of minimally parabolic, geometrically finite groups
%J Geometry & topology
%D 2011
%P 827-890
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.827/
%R 10.2140/gt.2011.15.827
%F GT_2011_15_2_a6
Ohshika, Ken’ichi. Realising end invariants by limits of minimally parabolic, geometrically finite groups. Geometry & topology, Tome 15 (2011) no. 2, pp. 827-890. doi : 10.2140/gt.2011.15.827. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.827/

[1] W Abikoff, On boundaries of Teichmüller spaces and on Kleinian groups. III, Acta Math. 134 (1975) 211

[2] I Agol, Tameness of hyperbolic $3$–manifolds

[3] L Bers, On boundaries of Teichmüller spaces and on Kleinian groups. I, Ann. of Math. $(2)$ 91 (1970) 570

[4] L Bers, An inequality for Riemann surfaces, from: "Differential geometry and complex analysis" (editors I Chavel, H M Farkas), Springer (1985) 87

[5] M Bestvina, Degenerations of the hyperbolic space, Duke Math. J. 56 (1988) 143

[6] F Bonahon, Cobordism of automorphisms of surfaces, Ann. Sci. École Norm. Sup. $(4)$ 16 (1983) 237

[7] F Bonahon, Bouts des variétés hyperboliques de dimension $3$, Ann. of Math. $(2)$ 124 (1986) 71

[8] F Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math. 92 (1988) 139

[9] J F Brock, K W Bromberg, On the density of geometrically finite Kleinian groups, Acta Math. 192 (2004) 33

[10] J F Brock, R D Canary, Y N Minsky, The classification of Kleinian surface groups, II: The Ending Lamination Conjecture

[11] J F Brock, J Souto, Algebraic limits of geometrically finite manifolds are tame, Geom. Funct. Anal. 16 (2006) 1

[12] K W Bromberg, Projective structures with degenerate holonomy and the Bers density conjecture, Ann. of Math. $(2)$ 166 (2007) 77

[13] R Brooks, J P Matelski, Collars in Kleinian groups, Duke Math. J. 49 (1982) 163

[14] D Calegari, D Gabai, Shrinkwrapping and the taming of hyperbolic $3$–manifolds, J. Amer. Math. Soc. 19 (2006) 385

[15] R D Canary, The Poincaré metric and a conformal version of a theorem of Thurston, Duke Math. J. 64 (1991) 349

[16] R D Canary, Ends of hyperbolic $3$–manifolds, J. Amer. Math. Soc. 6 (1993) 1

[17] R D Canary, A covering theorem for hyperbolic $3$–manifolds and its applications, Topology 35 (1996) 751

[18] R D Canary, The conformal boundary and the boundary of the convex core, Duke Math. J. 106 (2001) 193

[19] R D Canary, D B A Epstein, P Green, Notes on notes of Thurston, from: "Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984)" (editor D B A Epstein), London Math. Soc. Lecture Note Ser. 111, Cambridge Univ. Press (1987) 3

[20] D B A Epstein, A Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, from: "Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984)" (editor D B A Epstein), London Math. Soc. Lecture Note Ser. 111, Cambridge Univ. Press (1987) 113

[21] A Fathi, F Laudenbach, V Poenaru, Editors, Travaux de Thurston sur les surfaces, Astérisque 66–67, Soc. Math. France (1979) 284

[22] M Freedman, J Hass, P Scott, Least area incompressible surfaces in $3$–manifolds, Invent. Math. 71 (1983) 609

[23] D Gabai, The simple loop conjecture, J. Differential Geom. 21 (1985) 143

[24] W H Jaco, P B Shalen, Seifert fibered spaces in $3$–manifolds, Mem. Amer. Math. Soc. 21 (1979)

[25] K Johannson, Homotopy equivalences of $3$–manifolds with boundaries, Lecture Notes in Math. 761, Springer (1979)

[26] I Kim, C Lecuire, K Ohshika, Convergence of freely decomposable Kleinian groups

[27] G Kleineidam, J Souto, Algebraic convergence of function groups, Comment. Math. Helv. 77 (2002) 244

[28] C Lecuire, An extension of the Masur domain, from: "Spaces of Kleinian groups" (editors Y N Minsky, M Sakuma, C Series), London Math. Soc. Lecture Note Ser. 329, Cambridge Univ. Press (2006) 49

[29] C Lecuire, Plissage des variétés hyperboliques de dimension 3, Invent. Math. 164 (2006) 85

[30] B Maskit, Parabolic elements in Kleinian groups, Ann. of Math. $(2)$ 117 (1983) 659

[31] H A Masur, Y N Minsky, Geometry of the complex of curves. I. Hyperbolicity, Invent. Math. 138 (1999) 103

[32] H A Masur, Y N Minsky, Geometry of the complex of curves. II. Hierarchical structure, Geom. Funct. Anal. 10 (2000) 902

[33] D Mccullough, Compact submanifolds of $3$–manifolds with boundary, Quart. J. Math. Oxford Ser. $(2)$ 37 (1986) 299

[34] Y N Minsky, Teichmüller geodesics and ends of hyperbolic $3$–manifolds, Topology 32 (1993) 625

[35] Y N Minsky, On rigidity, limit sets, and end invariants of hyperbolic $3$–manifolds, J. Amer. Math. Soc. 7 (1994) 539

[36] Y N Minsky, The classification of punctured-torus groups, Ann. of Math. $(2)$ 149 (1999) 559

[37] Y N Minsky, Kleinian groups and the complex of curves, Geom. Topol. 4 (2000) 117

[38] Y N Minsky, The classification of Kleinian surface groups. I. Models and bounds, Ann. of Math. (2) 171 (2010) 1

[39] J W Morgan, On Thurston's uniformization theorem for three-dimensional manifolds, from: "The Smith conjecture (New York, 1979)" (editors J W Morgan, H Bass), Pure Appl. Math. 112, Academic Press (1984) 37

[40] J W Morgan, J P Otal, Relative growth rates of closed geodesics on a surface under varying hyperbolic structures, Comment. Math. Helv. 68 (1993) 171

[41] J W Morgan, P B Shalen, Valuations, trees, and degenerations of hyperbolic structures. I, Ann. of Math. $(2)$ 120 (1984) 401

[42] J W Morgan, P B Shalen, Degenerations of hyperbolic structures. II. Measured laminations in $3$–manifolds, Ann. of Math. $(2)$ 127 (1988) 403

[43] H Namazi, J Souto, Non-realizability, ending laminations and the density conjecture, preprint (2010)

[44] K Ohshika, Ending laminations and boundaries for deformation spaces of Kleinian groups, J. London Math. Soc. $(2)$ 42 (1990) 111

[45] K Ohshika, Limits of geometrically tame Kleinian groups, Invent. Math. 99 (1990) 185

[46] K Ohshika, Geometric behaviour of Kleinian groups on boundaries for deformation spaces, Quart. J. Math. Oxford Ser. $(2)$ 43 (1992) 97

[47] K Ohshika, Geometrically finite Kleinian groups and parabolic elements, Proc. Edinburgh Math. Soc. $(2)$ 41 (1998) 141

[48] K Ohshika, Rigidity and topological conjugates of topologically tame Kleinian groups, Trans. Amer. Math. Soc. 350 (1998) 3989

[49] K Ohshika, Kleinian groups which are limits of geometrically finite groups, Mem. Amer. Math. Soc. 177 (2005)

[50] K Ohshika, Constructing geometrically infinite groups on boundaries of deformation spaces, J. Math. Soc. Japan 61 (2009) 1261

[51] K Ohshika, H Miyachi, On topologically tame Kleinian groups with bounded geometry, from: "Spaces of Kleinian groups" (editors Y N Minsky, M Sakuma, C Series), London Math. Soc. Lecture Note Ser. 329, Cambridge Univ. Press (2006) 29

[52] J P Otal, Courants géodésiques et produits libres, Thèse d’Etat, Université Paris-Sud, Orsay (1988)

[53] J P Otal, Le théorème d'hyperbolisation pour les variétés fibrées de dimension 3, Astérisque 235, Soc. Math. France (1996)

[54] F Paulin, Topologie de Gromov équivariante, structures hyperboliques et arbres réels, Invent. Math. 94 (1988) 53

[55] G P Scott, Compact submanifolds of $3$–manifolds, J. London Math. Soc. $(2)$ 7 (1973) 246

[56] R K Skora, Splittings of surfaces, J. Amer. Math. Soc. 9 (1996) 605

[57] T Sugawa, Uniform perfectness of the limit sets of Kleinian groups, Trans. Amer. Math. Soc. 353 (2001) 3603

[58] W P Thurston, The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Lecture Notes (1979)

[59] F Waldhausen, On irreducible $3$–manifolds which are sufficiently large, Ann. of Math. $(2)$ 87 (1968) 56

Cité par Sources :