Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Given a measured lamination on a finite area hyperbolic surface we consider a natural measure on the real line obtained by taking the push-forward of the volume measure of the unit tangent bundle of the surface under an intersection function associated with the lamination. We show that the measure gives summation identities for the Rogers dilogarithm function on the moduli space of a surface.
Bridgeman, Martin 1
@article{GT_2011_15_2_a3, author = {Bridgeman, Martin}, title = {Orthospectra of geodesic laminations and dilogarithm identities on moduli space}, journal = {Geometry & topology}, pages = {707--733}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2011}, doi = {10.2140/gt.2011.15.707}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.707/} }
TY - JOUR AU - Bridgeman, Martin TI - Orthospectra of geodesic laminations and dilogarithm identities on moduli space JO - Geometry & topology PY - 2011 SP - 707 EP - 733 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.707/ DO - 10.2140/gt.2011.15.707 ID - GT_2011_15_2_a3 ER -
Bridgeman, Martin. Orthospectra of geodesic laminations and dilogarithm identities on moduli space. Geometry & topology, Tome 15 (2011) no. 2, pp. 707-733. doi : 10.2140/gt.2011.15.707. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.707/
[1] The orthogonal spectrum of a hyperbolic manifold, Amer. J. Math. 115 (1993) 1139
,[2] Ramanujan's Notebooks Part IV, Springer (1994)
,[3] Distribution of intersection lengths of a random geodesic with a geodesic lamination, Ergodic Theory Dynam. Systems 27 (2007) 1055
, ,[4] Hyperbolic volume of manifolds with geodesic boundary and orthospectra, Geom. Funct. Anal. 20 (2010) 1210
, ,[5] Chimneys, leopard spots and the identities of Basmajian and Bridgeman, Algebr. Geom. Topol. 10 (2010) 1857
,[6] Bridgeman's orthospectrum identity, Topology Proc. 38 (2011) 173
,[7] Algebraic dilogarithm identities, Ramanujan J. 1 (1997) 431
, ,[8] Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung, Ber. Verh. Sächs. Akad. Wiss. Leipzig 91 (1939) 261
,[9] Structural properties of polylogarithms, Mathematical Surveys and Monographs 37, American Mathematical Society (1991)
, ,[10] The ergodic theory of discrete groups, London Mathematical Society Lecture Note Series 143, Cambridge University Press (1989)
,[11] On function sum theorems connected with the series $\sum_1^{\infty} \frac{x^n}{n^2}$, Proc. London Math. Soc. 4 (1907) 169
,Cité par Sources :