Orthospectra of geodesic laminations and dilogarithm identities on moduli space
Geometry & topology, Tome 15 (2011) no. 2, pp. 707-733.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given a measured lamination λ on a finite area hyperbolic surface we consider a natural measure Mλ on the real line obtained by taking the push-forward of the volume measure of the unit tangent bundle of the surface under an intersection function associated with the lamination. We show that the measure Mλ gives summation identities for the Rogers dilogarithm function on the moduli space of a surface.

DOI : 10.2140/gt.2011.15.707
Keywords: orthospectrum

Bridgeman, Martin 1

1 Department of Mathematics, Boston College, Chestnut Hill, Ma 02167
@article{GT_2011_15_2_a3,
     author = {Bridgeman, Martin},
     title = {Orthospectra of geodesic laminations and dilogarithm identities on moduli space},
     journal = {Geometry & topology},
     pages = {707--733},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2011},
     doi = {10.2140/gt.2011.15.707},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.707/}
}
TY  - JOUR
AU  - Bridgeman, Martin
TI  - Orthospectra of geodesic laminations and dilogarithm identities on moduli space
JO  - Geometry & topology
PY  - 2011
SP  - 707
EP  - 733
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.707/
DO  - 10.2140/gt.2011.15.707
ID  - GT_2011_15_2_a3
ER  - 
%0 Journal Article
%A Bridgeman, Martin
%T Orthospectra of geodesic laminations and dilogarithm identities on moduli space
%J Geometry & topology
%D 2011
%P 707-733
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.707/
%R 10.2140/gt.2011.15.707
%F GT_2011_15_2_a3
Bridgeman, Martin. Orthospectra of geodesic laminations and dilogarithm identities on moduli space. Geometry & topology, Tome 15 (2011) no. 2, pp. 707-733. doi : 10.2140/gt.2011.15.707. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.707/

[1] A Basmajian, The orthogonal spectrum of a hyperbolic manifold, Amer. J. Math. 115 (1993) 1139

[2] B C Berndt, Ramanujan's Notebooks Part IV, Springer (1994)

[3] M Bridgeman, D Dumas, Distribution of intersection lengths of a random geodesic with a geodesic lamination, Ergodic Theory Dynam. Systems 27 (2007) 1055

[4] M Bridgeman, J Kahn, Hyperbolic volume of manifolds with geodesic boundary and orthospectra, Geom. Funct. Anal. 20 (2010) 1210

[5] D Calegari, Chimneys, leopard spots and the identities of Basmajian and Bridgeman, Algebr. Geom. Topol. 10 (2010) 1857

[6] D Calegari, Bridgeman's orthospectrum identity, Topology Proc. 38 (2011) 173

[7] B Gordon, R J Mcintosh, Algebraic dilogarithm identities, Ramanujan J. 1 (1997) 431

[8] E Hopf, Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung, Ber. Verh. Sächs. Akad. Wiss. Leipzig 91 (1939) 261

[9] L Lewin, Editor, Structural properties of polylogarithms, Mathematical Surveys and Monographs 37, American Mathematical Society (1991)

[10] P J Nicholls, The ergodic theory of discrete groups, London Mathematical Society Lecture Note Series 143, Cambridge University Press (1989)

[11] L J Rogers, On function sum theorems connected with the series $\sum_1^{\infty} \frac{x^n}{n^2}$, Proc. London Math. Soc. 4 (1907) 169

Cité par Sources :