Directed immersions of closed manifolds
Geometry & topology, Tome 15 (2011) no. 2, pp. 699-705.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given any finite subset X of the sphere Sn, n 2, which includes no pairs of antipodal points, we explicitly construct smoothly immersed closed orientable hypersurfaces in Euclidean space Rn+1 whose Gauss map misses X. In particular, this answers a question of M Gromov.

DOI : 10.2140/gt.2011.15.699
Classification : 53A07, 53C42, 57R42, 58K15
Keywords: Gauss map, spherical image, directed immersion, convex integration, h-principle, closed hypersurface, parallelizable manifold

Ghomi, Mohammad 1

1 School of Mathematics, Georgia Institute of Technology, Atlanta GA 30332, USA
@article{GT_2011_15_2_a2,
     author = {Ghomi, Mohammad},
     title = {Directed immersions of closed manifolds},
     journal = {Geometry & topology},
     pages = {699--705},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2011},
     doi = {10.2140/gt.2011.15.699},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.699/}
}
TY  - JOUR
AU  - Ghomi, Mohammad
TI  - Directed immersions of closed manifolds
JO  - Geometry & topology
PY  - 2011
SP  - 699
EP  - 705
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.699/
DO  - 10.2140/gt.2011.15.699
ID  - GT_2011_15_2_a2
ER  - 
%0 Journal Article
%A Ghomi, Mohammad
%T Directed immersions of closed manifolds
%J Geometry & topology
%D 2011
%P 699-705
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.699/
%R 10.2140/gt.2011.15.699
%F GT_2011_15_2_a2
Ghomi, Mohammad. Directed immersions of closed manifolds. Geometry & topology, Tome 15 (2011) no. 2, pp. 699-705. doi : 10.2140/gt.2011.15.699. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.699/

[1] Y Eliashberg, N Mishachev, Introduction to the $h$–principle, Graduate Studies in Math. 48, Amer. Math. Soc. (2002)

[2] M Ghomi, Gauss map, topology, and convexity of hypersurfaces with nonvanishing curvature, Topology 41 (2002) 107

[3] M Ghomi, Shadows and convexity of surfaces, Ann. of Math. $(2)$ 155 (2002) 281

[4] M Ghomi, Tangent bundle embeddings of manifolds in Euclidean space, Comment. Math. Helv. 81 (2006) 259

[5] M Ghomi, M Kossowski, $h$–principles for hypersurfaces with prescribed principal curvatures and directions, Trans. Amer. Math. Soc. 358 (2006) 4379

[6] M Ghomi, S Tabachnikov, Totally skew embeddings of manifolds, Math. Z. 258 (2008) 499

[7] M Gromov, Partial differential relations, Ergebnisse der Math. und ihrer Grenzgebiete (3) 9, Springer (1986)

[8] M Gromov, Spaces and questions, from: "Visions in mathematics: GAFA 2000 (Tel Aviv, 1999)" (editors N Alon, J Bourgain, M Connes A. And Gromov, V D Milman), Geom. Funct. Anal., Special Volume, Part I (2000) 118

[9] P Hartman, L Nirenberg, On spherical image maps whose Jacobians do not change sign, Amer. J. Math. 81 (1959) 901

[10] M W Hirsch, On imbedding differentiable manifolds in euclidean space, Ann. of Math. $(2)$ 73 (1961) 566

[11] J Milnor, On the immersion of $n$–manifolds in $(n{+}1)$-space, Comment. Math. Helv. 30 (1956) 275

[12] U Pinkall, Regular homotopy classes of immersed surfaces, Topology 24 (1985) 421

[13] C Rourke, B Sanderson, The compression theorem. II. Directed embeddings, Geom. Topol. 5 (2001) 431

[14] D Spring, Directed embeddings of closed manifolds, Commun. Contemp. Math. 7 (2005) 707

[15] D Spring, The golden age of immersion theory in topology: 1959–1973. A mathematical survey from a historical perspective, Bull. Amer. Math. Soc. $($N.S.$)$ 42 (2005) 163

[16] H Wu, The spherical images of convex hypersurfaces, J. Differential Geometry 9 (1974) 279

Cité par Sources :