Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We provide a model of the String group as a central extension of finite-dimensional –groups in the bicategory of Lie groupoids, left-principal bibundles, and bibundle maps. This bicategory is a geometric incarnation of the bicategory of smooth stacks and generalizes the more naive –category of Lie groupoids, smooth functors, and smooth natural transformations. In particular this notion of smooth –group subsumes the notion of Lie –group introduced by Baez and Lauda [Theory Appl. Categ. 12 (2004) 423–491]. More precisely we classify a large family of these central extensions in terms of the topological group cohomology introduced by Segal [Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69), Academic Press, London (1970) 377–387], and our String –group is a special case of such extensions. There is a nerve construction which can be applied to these –groups to obtain a simplicial manifold, allowing comparison with the model of Henriques [arXiv:math/0603563]. The geometric realization is an –space, and in the case of our model, has the correct homotopy type of String(n). Unlike all previous models, our construction takes place entirely within the framework of finite-dimensional manifolds and Lie groupoids. Moreover within this context our model is characterized by a strong uniqueness result. It is a canonical central extension of Spin(n).
Schommer-Pries, Christopher J 1
@article{GT_2011_15_2_a0, author = {Schommer-Pries, Christopher~J}, title = {Central extensions of smooth 2{\textendash}groups and a finite-dimensional string 2{\textendash}group}, journal = {Geometry & topology}, pages = {609--676}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2011}, doi = {10.2140/gt.2011.15.609}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.609/} }
TY - JOUR AU - Schommer-Pries, Christopher J TI - Central extensions of smooth 2–groups and a finite-dimensional string 2–group JO - Geometry & topology PY - 2011 SP - 609 EP - 676 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.609/ DO - 10.2140/gt.2011.15.609 ID - GT_2011_15_2_a0 ER -
%0 Journal Article %A Schommer-Pries, Christopher J %T Central extensions of smooth 2–groups and a finite-dimensional string 2–group %J Geometry & topology %D 2011 %P 609-676 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.609/ %R 10.2140/gt.2011.15.609 %F GT_2011_15_2_a0
Schommer-Pries, Christopher J. Central extensions of smooth 2–groups and a finite-dimensional string 2–group. Geometry & topology, Tome 15 (2011) no. 2, pp. 609-676. doi : 10.2140/gt.2011.15.609. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.609/
[1] Multiplicative orientations of KO–theory and of the spectrum of topological modular forms, preprint (2010)
, , ,[2] Elliptic spectra, the Witten genus and the theorem of the cube, Invent. Math. 146 (2001) 595
, , ,[3] Nonabelian bundle gerbes, their differential geometry and gauge theory, Comm. Math. Phys. 254 (2005) 367
, , ,[4] Convenient categories of smooth spaces
, ,[5] Higher-dimensional algebra. V. $2$–groups, Theory Appl. Categ. 12 (2004) 423
, ,[6] Higher-dimensional algebra. I. Braided monoidal $2$–categories, Adv. Math. 121 (1996) 196
, ,[7] From loop groups to $2$–groups, Homology, Homotopy Appl. 9 (2007) 101
, , , ,[8] Bigroupoid $2$–torsors, PhD thesis, Ludwig-Maximilians-Universität München (2008)
,[9] Higher gauge theory I: 2–Bundles
,[10] Differentiable stacks and gerbes
, ,[11] Two-dimensional monad theory, J. Pure Appl. Algebra 59 (1989) 1
, , ,[12] Differentiable cohomology of gauge groups
,[13] Exact categories
,[14] Compactly generated stacks: A Cartesian-closed theory of topological stacks
,[15] Bundle gerbes for Chern–Simons and Wess–Zumino–Witten theories, Comm. Math. Phys. 259 (2005) 577
, , , , ,[16] Monoidal bicategories and Hopf algebroids, Adv. Math. 129 (1997) 99
, ,[17] Group cohomology and Lie algebra cohomology in Lie groups. I, II, Nederl. Akad. Wetensch. Proc. Ser. A. \bf56 = Indag. Math. 15 (1953) 484, 493
,[18] On the algebraic cohomology concepts in Lie groups. I, II, Nederl. Akad. Wetensch. Proc. Ser. A. \bf58 = Indag. Math. 17 (1955) 225, 286
,[19] Étale homotopy of simplicial schemes, Annals of Math. Studies 104, Princeton Univ. Press (1982)
,[20] Cohomologie non abélienne, Die Grund. der math. Wissenschaften 179, Springer (1971)
,[21] Simplicial homotopy theory, Progress in Math. 174, Birkhäuser Verlag (1999)
, ,[22] Coherence for tricategories, Mem. Amer. Math. Soc. 117 no. 558 (1995)
, , ,[23] Integrating L-infinity algebras
,[24] Lecture by Michael Hopkins: the string orientation of tmf
,[25] Cohomology of Lie groups, Illinois J. Math. 6 (1962) 367
, ,[26] Topological modular forms, the Witten genus, and the theorem of the cube, from: "Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994)" (editor S D Chatterji), Birkhäuser (1995) 554
,[27] Algebraic topology and modular forms, from: "Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002)" (editor T T Li), Higher Ed. Press (2002) 291
,[28] Quadratic functions in geometry, topology, and M–theory, J. Differential Geom. 70 (2005) 329
, ,[29] Cohomology rings of compact connected groups and their homogeneous spaces, Ann. of Math. $(2)$ 55 (1952) 391
,[30] Cohomology theory in topological groups, Michigan Math. J. 1 (1952) 11
,[31] On some types of topological groups, Ann. of Math. $(2)$ 50 (1949) 507
,[32] Braided tensor categories, Adv. Math. 102 (1993) 20
, ,[33] Crossed module bundle gerbes; classification, string group and differential geometry
,[34] $2$–categories and Zamolodchikov tetrahedra equations, from: "Algebraic groups and their generalizations: quantum and infinite-dimensional methods (University Park, PA, 1991)" (editors W J Haboush, B J Parshall), Proc. Sympos. Pure Math. 56, Amer. Math. Soc. (1994) 177
, ,[35] Braided monoidal $2$–categories and Manin–Schechtman higher braid groups, J. Pure Appl. Algebra 92 (1994) 241
, ,[36] World-sheet anomalies and loop geometry, Nuclear Phys. B 288 (1987) 578
,[37] Orbifolds as stacks?
,[38] The stable category and generalized Thom spectra, PhD thesis, University of Chicago (1978)
,[39] Derived algebraic geometry II: Noncommutative algebra
,[40] Higher topos theory, Annals of Math. Studies 170, Princeton Univ. Press (2009)
,[41] On the theory of the Lie groups in the large, Rec. Math. [Mat. Sbornik] N. S. 16 (58) (1945) 163
,[42] Corrections to the paper “On the theory of the Lie groups in the large.”, Rec. Math. [Mat Sbornik] N. S. 19 (61) (1946) 523
,[43] The geometry of iterated loop spaces, Lectures Notes in Math. 271, Springer (1972)
,[44] The basic gerbe over a compact simple Lie group, Enseign. Math. $(2)$ 49 (2003) 307
,[45] Bundle gerbes, J. London Math. Soc. $(2)$ 54 (1996) 403
,[46] Mapping stacks of topological stacks
,[47] Etendues and stacks as bicategories of fractions, Compositio Math. 102 (1996) 243
,[48] Higher algebraic $K$–theory. I, from: "Algebraic $K$–theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972)" (editor H Bass), Lecture Notes in Math. 341, Springer (1973) 85
,[49] Canonical metric connections associated to string structures, PhD thesis, University of Notre Dame (2006)
,[50] Are finite colimits of topological spaces stable under pull-back?, Website entry (2010)
,[51] Differential twisted string and Fivebrane structures
, , ,[52] $L_\infty$–algebra connections and applications to String– and Chern–Simons $n$–transport, from: "Quantum field theory" (editors B Fauser, J Tolksdorf, E Zeidler), Birkhäuser (2009) 303
, , ,[53] Higher homological algebra, in preparation
,[54] The classification of two-dimensional extended topological field theories, PhD thesis, University of California, Berkeley (2009)
,[55] Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. (1968) 105
,[56] Cohomology of topological groups, from: "Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69)", Academic Press (1970) 377
,[57] A classifying space of a topological group in the sense of Gel'fand–Fuks, Funkcional. Anal. i Priložen. 9 (1975) 48
,[58] A conjecture concerning positive Ricci curvature and the Witten genus, Math. Ann. 304 (1996) 785
,[59]
, Private communicaton (2009)[60] What is an elliptic object?, from: "Topology, geometry and quantum field theory", London Math. Soc. Lecture Note Ser. 308, Cambridge Univ. Press (2004) 247
, ,[61] The spinor bundle on loop space, preprint (2005)
, ,[62] Fibrations in bicategories, Cahiers Topologie Géom. Différentielle 21 (1980) 111
,[63] Correction to: “Fibrations in bicategories” \rm\citeStreet80, Cahiers Topologie Géom. Différentielle Catég. 28 (1987) 53
,[64] String connections and Chern–Simons theory
,[65] The index of the Dirac operator in loop space, from: "Elliptic curves and modular forms in algebraic topology (Princeton, NJ, 1986)" (editor P S Landweber), Lecture Notes in Math. 1326, Springer (1988) 161
,[66] Categorified central extensions, étale Lie $2$–groups and Lie's Third Theorem for locally exponential Lie algebras
,Cité par Sources :