Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study the Galois actions on the –adic schematic and Artin–Mazur homotopy groups of algebraic varieties. For proper varieties of good reduction over a local field , we show that the –adic schematic homotopy groups are mixed representations explicitly determined by the Galois action on cohomology of Weil sheaves, whenever is not equal to the residue characteristic of . For quasiprojective varieties of good reduction, there is a similar characterisation involving the Gysin spectral sequence. When , a slightly weaker result is proved by comparing the crystalline and –adic schematic homotopy types. Under favourable conditions, a comparison theorem transfers all these descriptions to the Artin–Mazur homotopy groups .
Pridham, Jonathan P 1
@article{GT_2011_15_1_a15, author = {Pridham, Jonathan~P}, title = {Galois actions on homotopy groups of algebraic varieties}, journal = {Geometry & topology}, pages = {501--607}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2011}, doi = {10.2140/gt.2011.15.501}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.501/} }
Pridham, Jonathan P. Galois actions on homotopy groups of algebraic varieties. Geometry & topology, Tome 15 (2011) no. 1, pp. 501-607. doi : 10.2140/gt.2011.15.501. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.501/
[1] Comparison isomorphisms for smooth formal schemes, Preprint (2009)
, ,[2] Etale homotopy, Lecture Notes in Math. 100, Springer (1969)
, ,[3] Homotopy limits, completions and localizations, Lecture Notes in Math. 304, Springer (1972)
, ,[4] Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. (1971) 5
,[5] La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. (1980) 137
,[6] Hodge cycles, motives, and Shimura varieties, Lecture Notes in Math. 900, Springer (1982)
, , , ,[7] Homotopy theory and simplicial groupoids, Nederl. Akad. Wetensch. Indag. Math. 46 (1984) 379
, ,[8] Crystalline cohomology and $p$–adic Galois representations, from: "Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988)" (editor J I Igusa), Johns Hopkins Univ. Press (1989) 25
,[9] Sur certains types de représentations $p$–adiques du groupe de Galois d'un corps local; construction d'un anneau de Barsotti–Tate, Ann. of Math. $(2)$ 115 (1982) 529
,[10] Étale homotopy of simplicial schemes, Annals of Math. Studies 104, Princeton Univ. Press (1982)
,[11] Simplicial homotopy theory, Progress in Math. 174, Birkhäuser Verlag (1999)
, ,[12] Revêtements étales et groupe fondamental (SGA 1), Documents Math. (Paris) 3, Soc. Math. France (2003)
,[13] The Hodge de Rham theory of relative Malcev completion, Ann. Sci. École Norm. Sup. $(4)$ 31 (1998) 47
,[14] Relative pro-$l$ completions of mapping class groups, J. Algebra 321 (2009) 3335
, ,[15] On homotopy limit of homotopy algebras, from: "$K$–theory, arithmetic and geometry (Moscow, 1984–1986)" (editor Y I Manin), Lecture Notes in Math. 1289, Springer (1987) 240
, ,[16] Model categories and their localizations, Math. Surveys and Monogr. 99, Amer. Math. Soc. (2003)
,[17] Pro-affine algebraic groups, Amer. J. Math. 91 (1969) 1127
, ,[18] Model categories, Math. Surveys and Monogr. 63, Amer. Math. Soc. (1999)
,[19] A model structure on the category of pro-simplicial sets, Trans. Amer. Math. Soc. 353 (2001) 2805
,[20] Continuous étale cohomology, Math. Ann. 280 (1988) 207
,[21] $p$–adic properties of modular schemes and modular forms, from: "Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972)" (editors W Kuyk, J P Serre), Lecture Notes in Math. 350, Springer (1973) 69
,[22] Schematic homotopy types and non-abelian Hodge theory, Compos. Math. 144 (2008) 582
, , ,[23] Algebraic and topological aspects of the schematization functor, Compos. Math. 145 (2009) 633
, , ,[24] Fourier transforms and $p$–adic ‘Weil II’, Compos. Math. 142 (2006) 1426
,[25] Weil conjectures, perverse sheaves and $l$'adic Fourier transform, Ergebnisse der Math. und ihrer Grenzgebiete. 3. Folge. 42, Springer (2001)
, ,[26] Topics in algebra — deformation theory, Lecture notes (1994)
,[27] Chtoucas de Drinfeld et correspondance de Langlands, Invent. Math. 147 (2002) 1
,[28] Categories for the working mathematician, Graduate Texts in Math. 5, Springer (1971)
,[29] On the proalgebraic completion of a finitely generated group, from: "Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001)" (editors S Cleary, R Gilman, A G Myasnikov, V Shpilrain), Contemp. Math. 296, Amer. Math. Soc. (2002) 171
,[30] Étale cohomology, Princeton Math. Series 33, Princeton Univ. Press (1980)
,[31] The algebraic topology of smooth algebraic varieties, Inst. Hautes Études Sci. Publ. Math. (1978) 137
,[32] $F$–isocrystals and homotopy types, J. Pure Appl. Algebra 210 (2007) 591
,[33] Towards non-abelian $p$–adic Hodge theory in the good reduction case, Mem. Amer. Math. Soc. 210 no. 990, Amer. Math. Soc. (2011)
,[34] Formality and splitting of real non-abelian mixed Hodge structures
,[35] Galois actions on the pro–$l$–unipotent fundamental group
,[36] Deforming $l$–adic representations of the fundamental group of a smooth variety, J. Algebraic Geom. 15 (2006) 415
,[37] Pro-algebraic homotopy types, Proc. Lond. Math. Soc. $(3)$ 97 (2008) 273
,[38] Weight decompositions on étale fundamental groups, Amer. J. Math. 131 (2009) 869
,[39] The homotopy theory of strong homotopy algebras and bialgebras, Homology, Homotopy Appl. 12 (2010) 39
,[40] Unifying derived deformation theories, Adv. Math. 224 (2010) 772
,[41] $\ell$–adic pro-algebraic and relative pro–$\ell$ fundamental groups, to appear in “The arithmetic of fundamental groups (PIA 2010)”, (J Stix, editor), Springer, Berlin (2011)
,[42] Profinite homotopy theory, Doc. Math. 13 (2008) 585
,[43] An application of simplicial profinite groups, Comment. Math. Helv. 44 (1969) 45
,[44] Rational homotopy theory, Ann. of Math. $(2)$ 90 (1969) 205
,[45] Extensions with restricted ramification and duality for arithmetic schemes, Compositio Math. 100 (1996) 233
,[46] Lie algebras and Lie groups, Lecture Notes in Math. 1500, Springer (1992)
,[47] Cohomologie galoisienne, Lecture Notes in Math. 5, Springer (1994)
,[48] Crystalline fundamental groups and $p$–adic Hodge theory, from: "The arithmetic and geometry of algebraic cycles (Banff, AB, 1998)" (editors B B Gordon, J D Lewis, S Müller-Stach, S Saito, N Yui), CRM Proc. Lecture Notes 24, Amer. Math. Soc. (2000) 381
,[49] Champs affines, Selecta Math. $($N.S.$)$ 12 (2006) 39
,[50] Crystalline sheaves, syntomic cohomology and $p$–adic polylogarithms, Caltech seminar notes (2001)
,[51] Hodge structure on the fundamental group and its application to $p$–adic integration, Mosc. Math. J. 3 (2003) 205, 260
,[52] An introduction to homological algebra, Cambridge Studies in Advanced Math. 38, Cambridge Univ. Press (1994)
,Cité par Sources :