Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We give an alternative proof of the Madsen–Weiss generalized Mumford conjecture. At the heart of the argument is a geometric version of Harer stability, which we formulate as a theorem about folded maps. A technical ingredient in the proof is an –principle type statement, called the “wrinkling theorem” by the first and third authors [Invent. Math. 130 (1997) 345–369]. Let us stress the point that we are neither proving the wrinkling theorem nor the Harer stability theorem.
Eliashberg, Yakov 1 ; Galatius, Søren 1 ; Mishachev, Nikolai 2
@article{GT_2011_15_1_a12, author = {Eliashberg, Yakov and Galatius, S{\o}ren and Mishachev, Nikolai}, title = {Madsen{\textendash}Weiss for geometrically minded topologists}, journal = {Geometry & topology}, pages = {411--472}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2011}, doi = {10.2140/gt.2011.15.411}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.411/} }
TY - JOUR AU - Eliashberg, Yakov AU - Galatius, Søren AU - Mishachev, Nikolai TI - Madsen–Weiss for geometrically minded topologists JO - Geometry & topology PY - 2011 SP - 411 EP - 472 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.411/ DO - 10.2140/gt.2011.15.411 ID - GT_2011_15_1_a12 ER -
%0 Journal Article %A Eliashberg, Yakov %A Galatius, Søren %A Mishachev, Nikolai %T Madsen–Weiss for geometrically minded topologists %J Geometry & topology %D 2011 %P 411-472 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.411/ %R 10.2140/gt.2011.15.411 %F GT_2011_15_1_a12
Eliashberg, Yakov; Galatius, Søren; Mishachev, Nikolai. Madsen–Weiss for geometrically minded topologists. Geometry & topology, Tome 15 (2011) no. 1, pp. 411-472. doi : 10.2140/gt.2011.15.411. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.411/
[1] Wave front evolution and equivariant Morse lemma, Comm. Pure Appl. Math. 29 (1976) 557
,[2] Improved homological stability for the mapping class group with integral or twisted coefficients
,[3] Surgery of singularities of smooth mappings, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972) 1321
,[4] Wrinkling of smooth mappings and its applications. I, Invent. Math. 130 (1997) 345
, ,[5] Quillenization and bordism, Funkcional. Anal. i Priložen. 8 (1974) 36
,[6] Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. $(2)$ 121 (1985) 215
,[7] Stabilization of the homology of Teichmüller modular groups, Algebra i Analiz 1 (1989) 110
,[8] On the homology stability for Teichmüller modular groups: closed surfaces and twisted coefficients, from: "Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991)" (editors C F Bödigheimer, R M Hain), Contemp. Math. 150, Amer. Math. Soc. (1993) 149
,[9] The stable mapping class group and $Q(\mathbb C \mathrm P^\infty_+)$, Invent. Math. 145 (2001) 509
, ,[10] The stable moduli space of Riemann surfaces: Mumford's conjecture, Ann. of Math. $(2)$ 165 (2007) 843
, ,[11] Lectures on the $h$–cobordism theorem, Princeton Univ. Press (1965)
,[12] Submersions of open manifolds, Topology 6 (1967) 171
,Cité par Sources :