Madsen–Weiss for geometrically minded topologists
Geometry & topology, Tome 15 (2011) no. 1, pp. 411-472.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We give an alternative proof of the Madsen–Weiss generalized Mumford conjecture. At the heart of the argument is a geometric version of Harer stability, which we formulate as a theorem about folded maps. A technical ingredient in the proof is an h–principle type statement, called the “wrinkling theorem” by the first and third authors [Invent. Math. 130 (1997) 345–369]. Let us stress the point that we are neither proving the wrinkling theorem nor the Harer stability theorem.

DOI : 10.2140/gt.2011.15.411
Keywords: Madsen–Weiss theorem, Mumford conjecture, Harer stability theorem

Eliashberg, Yakov 1 ; Galatius, Søren 1 ; Mishachev, Nikolai 2

1 Department of Mathematics, Stanford University, Building 380, Stanford CA 94305, USA
2 Department of Mathematics, Lipetsk State Technical University, 30 Moskovskaya St, Lipetsk 398055, Russia
@article{GT_2011_15_1_a12,
     author = {Eliashberg, Yakov and Galatius, S{\o}ren and Mishachev, Nikolai},
     title = {Madsen{\textendash}Weiss for geometrically minded topologists},
     journal = {Geometry & topology},
     pages = {411--472},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2011},
     doi = {10.2140/gt.2011.15.411},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.411/}
}
TY  - JOUR
AU  - Eliashberg, Yakov
AU  - Galatius, Søren
AU  - Mishachev, Nikolai
TI  - Madsen–Weiss for geometrically minded topologists
JO  - Geometry & topology
PY  - 2011
SP  - 411
EP  - 472
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.411/
DO  - 10.2140/gt.2011.15.411
ID  - GT_2011_15_1_a12
ER  - 
%0 Journal Article
%A Eliashberg, Yakov
%A Galatius, Søren
%A Mishachev, Nikolai
%T Madsen–Weiss for geometrically minded topologists
%J Geometry & topology
%D 2011
%P 411-472
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.411/
%R 10.2140/gt.2011.15.411
%F GT_2011_15_1_a12
Eliashberg, Yakov; Galatius, Søren; Mishachev, Nikolai. Madsen–Weiss for geometrically minded topologists. Geometry & topology, Tome 15 (2011) no. 1, pp. 411-472. doi : 10.2140/gt.2011.15.411. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.411/

[1] V I Arnol’D, Wave front evolution and equivariant Morse lemma, Comm. Pure Appl. Math. 29 (1976) 557

[2] S Boldsen, Improved homological stability for the mapping class group with integral or twisted coefficients

[3] Y Eliashberg, Surgery of singularities of smooth mappings, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972) 1321

[4] Y Eliashberg, N M Mishachev, Wrinkling of smooth mappings and its applications. I, Invent. Math. 130 (1997) 345

[5] D B Fuchs, Quillenization and bordism, Funkcional. Anal. i Priložen. 8 (1974) 36

[6] J L Harer, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. $(2)$ 121 (1985) 215

[7] N V Ivanov, Stabilization of the homology of Teichmüller modular groups, Algebra i Analiz 1 (1989) 110

[8] N V Ivanov, On the homology stability for Teichmüller modular groups: closed surfaces and twisted coefficients, from: "Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991)" (editors C F Bödigheimer, R M Hain), Contemp. Math. 150, Amer. Math. Soc. (1993) 149

[9] I Madsen, U Tillmann, The stable mapping class group and $Q(\mathbb C \mathrm P^\infty_+)$, Invent. Math. 145 (2001) 509

[10] I Madsen, M Weiss, The stable moduli space of Riemann surfaces: Mumford's conjecture, Ann. of Math. $(2)$ 165 (2007) 843

[11] J Milnor, Lectures on the $h$–cobordism theorem, Princeton Univ. Press (1965)

[12] A Phillips, Submersions of open manifolds, Topology 6 (1967) 171

Cité par Sources :