Rigidity versus flexibility for tight confoliations
Geometry & topology, Tome 15 (2011) no. 1, pp. 41-121.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In their book "Confoliations" [Univ. Lecture Ser. 13, Amer. Math. Soc. (1998)], Y Eliashberg and W Thurston gave a definition of tight confoliations. We give an example of a tight confoliation ξ on T3 violating the Thurston–Bennequin inequalities. This answers a question from "Confoliations" negatively. Despite this, it is still possible to prove restrictions on homotopy classes of plane fields which contain tight confoliations.

The failure of the Thurston–Bennequin inequalities for tight confoliations is due to the presence of overtwisted stars. Overtwisted stars are particular configurations of Legendrian curves which bound a disc with finitely many punctures on the boundary. We prove that the Thurston–Bennequin inequalities hold for tight confoliations without overtwisted stars and that symplectically fillable confoliations do not admit overtwisted stars.

DOI : 10.2140/gt.2011.15.41
Keywords: tight, confoliation

Vogel, Thomas 1

1 Max-Planck-Institut für Mathematik, Vivatsgasse 7, D-53129 Bonn, Germany
@article{GT_2011_15_1_a2,
     author = {Vogel, Thomas},
     title = {Rigidity versus flexibility for tight confoliations},
     journal = {Geometry & topology},
     pages = {41--121},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2011},
     doi = {10.2140/gt.2011.15.41},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.41/}
}
TY  - JOUR
AU  - Vogel, Thomas
TI  - Rigidity versus flexibility for tight confoliations
JO  - Geometry & topology
PY  - 2011
SP  - 41
EP  - 121
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.41/
DO  - 10.2140/gt.2011.15.41
ID  - GT_2011_15_1_a2
ER  - 
%0 Journal Article
%A Vogel, Thomas
%T Rigidity versus flexibility for tight confoliations
%J Geometry & topology
%D 2011
%P 41-121
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.41/
%R 10.2140/gt.2011.15.41
%F GT_2011_15_1_a2
Vogel, Thomas. Rigidity versus flexibility for tight confoliations. Geometry & topology, Tome 15 (2011) no. 1, pp. 41-121. doi : 10.2140/gt.2011.15.41. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.41/

[1] B Aebischer, M Borer, M Kälin, C Leuenberger, H M Reimann, Symplectic geometry, Progress in Math. 124, Birkhäuser Verlag (1994)

[2] S J Altschuler, L F Wu, On deforming confoliations, J. Differential Geom. 54 (2000) 75

[3] S K Aranson, G R Belitsky, E V Zhuzhoma, Introduction to the qualitative theory of dynamical systems on surfaces, Translations of Math. Monogr. 153, Amer. Math. Soc. (1996)

[4] D Bennequin, Entrelacements et équations de Pfaff, from: "Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982)", Astérisque 107, Soc. Math. France (1983) 87

[5] A Candel, L Conlon, Foliations. I, Graduate Studies in Math. 23, Amer. Math. Soc. (2000)

[6] A Candel, L Conlon, Foliations. II, Graduate Studies in Math. 60, Amer. Math. Soc. (2003)

[7] V Colin, Chirurgies d'indice un et isotopies de sphères dans les variétés de contact tendues, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 659

[8] V Colin, Recollement de variétés de contact tendues, Bull. Soc. Math. France 127 (1999) 43

[9] Y Eliashberg, Contact $3$–manifolds twenty years since J Martinet's work, Ann. Inst. Fourier (Grenoble) 42 (1992) 165

[10] Y Eliashberg, W P Thurston, Confoliations, Univ. Lecture Series 13, Amer. Math. Soc. (1998)

[11] J B Etnyre, Approximation of foliations by contact structures, in preparation

[12] J B Etnyre, Introductory lectures on contact geometry, from: "Topology and geometry of manifolds (Athens, GA, 2001)" (editors G Matić, C McCrory), Proc. Sympos. Pure Math. 71, Amer. Math. Soc. (2003) 81

[13] J B Etnyre, Contact structures on $3$–manifolds are deformations of foliations, Math. Res. Lett. 14 (2007) 775

[14] J B Etnyre, Contact geometry in low dimensional topology, from: "Low dimensional topology" (editors T S Mrowka, P S Ozsváth), IAS/Park City Math. Ser. 15, Amer. Math. Soc. (2009) 229

[15] H Geiges, An introduction to contact topology, Cambridge Studies in Advanced Math. 109, Cambridge Univ. Press (2008)

[16] E Giroux, Convexité en topologie de contact, Comment. Math. Helv. 66 (1991) 637

[17] E Giroux, Structures de contact en dimension trois et bifurcations des feuilletages de surfaces, Invent. Math. 141 (2000) 615

[18] C Gutiérrez, Smoothing continuous flows on two-manifolds and recurrences, Ergodic Theory Dynam. Systems 6 (1986) 17

[19] G Hector, U Hirsch, Introduction to the geometry of foliations. Part B. Foliations of codimension one, Aspects of Math. E3, Friedr. Vieweg Sohn (1987)

[20] R Hind, Filling by holomorphic disks with weakly pseudoconvex boundary conditions, Geom. Funct. Anal. 7 (1997) 462

[21] M W Hirsch, Differential topology, Graduate Texts in Math. 33, Springer (1976)

[22] K Honda, On the classification of tight contact structures. I, Geom. Topol. 4 (2000) 309

[23] A Katok, B Hasselblatt, Introduction to the modern theory of dynamical systems, Encycl. of Math. and its Appl. 54, Cambridge Univ. Press (1995)

[24] J E Marsden, M Mccracken, The Hopf bifurcation and its applications, Appl. Math. Sci. 19, Springer (1976)

[25] A Mori, A note on Thurston–Winkelnkemper's construction of contact forms on $3$–manifolds, Osaka J. Math. 39 (2002) 1

[26] I Nikolaev, E Zhuzhoma, Flows on $2$–dimensional manifolds. An overview, Lecture Notes in Math. 1705, Springer (1999)

[27] S P Novikov, The topology of foliations, Trudy Moskov. Mat. Obšč. 14 (1965) 248

[28] C Petronio, A theorem of Eliashberg and Thurston on foliations and contact structures, Notes of Courses Given by Teachers at the School, Scuola Normale Superiore (1997) 64

[29] R Roussarie, Plongements dans les variétés feuilletées et classification de feuilletages sans holonomie, Inst. Hautes Études Sci. Publ. Math. (1974) 101

[30] R Sacksteder, Foliations and pseudogroups, Amer. J. Math. 87 (1965) 79

[31] W P Thurston, A norm for the homology of $3$–manifolds, Mem. Amer. Math. Soc. 59 no. 339, Amer. Math. Soc. (1986)

Cité par Sources :