Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that for a sufficiently ample line bundle on a surface , the number of –nodal curves in a general –dimensional linear system is given by a universal polynomial of degree in the four numbers and .
The technique is a study of Hilbert schemes of points on curves on a surface, using the BPS calculus of Pandharipande and the third author [J. Amer. Math. Soc. 23 (2010) 267–297] and the computation of tautological integrals on Hilbert schemes by Ellingsrud, Göttsche and Lehn [J. Algebraic Geom. 10 (2001) 81–100].
We are also able to weaken the ampleness required, from Göttsche’s –very ample to –very ample.
Kool, Martijn 1 ; Shende, Vivek 2 ; Thomas, Richard P 1
@article{GT_2011_15_1_a10, author = {Kool, Martijn and Shende, Vivek and Thomas, Richard~P}, title = {A short proof of the {G\"ottsche} conjecture}, journal = {Geometry & topology}, pages = {397--406}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2011}, doi = {10.2140/gt.2011.15.397}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.397/} }
TY - JOUR AU - Kool, Martijn AU - Shende, Vivek AU - Thomas, Richard P TI - A short proof of the Göttsche conjecture JO - Geometry & topology PY - 2011 SP - 397 EP - 406 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.397/ DO - 10.2140/gt.2011.15.397 ID - GT_2011_15_1_a10 ER -
Kool, Martijn; Shende, Vivek; Thomas, Richard P. A short proof of the Göttsche conjecture. Geometry & topology, Tome 15 (2011) no. 1, pp. 397-406. doi : 10.2140/gt.2011.15.397. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.397/
[1] Counting rational curves on $K3$ surfaces, Duke Math. J. 97 (1999) 99
,[2] Generating functions for the number of curves on abelian surfaces, Duke Math. J. 99 (1999) 311
, ,[3] The enumerative geometry of $K3$ surfaces and modular forms, J. Amer. Math. Soc. 13 (2000) 371
, ,[4] Counting plane curves of any genus, Invent. Math. 131 (1998) 345
, ,[5] Enumerative geometry of plane curves, PhD thesis, University of California, Riverside (1999)
,[6] Quantum intersection rings, from: "The moduli space of curves (Texel Island, 1994)", Progr. Math. 129, Birkhäuser (1995) 81
, ,[7] Ideals associated to deformations of singular plane curves, Trans. Amer. Math. Soc. 309 (1988) 433
, ,[8] On the cobordism class of the Hilbert scheme of a surface, J. Algebraic Geom. 10 (2001) 81
, , ,[9] Labeled floor diagrams for plane curves
, ,[10] A conjectural generating function for numbers of curves on surfaces, Comm. Math. Phys. 196 (1998) 523
,[11] String partition functions and infinite products, Adv. Theor. Math. Phys. 4 (2000) 397
, ,[12] Multisingularities, cobordisms, and enumerative geometry, Russian Math. Surveys 58 (2003) 665
,[13] Enumerating singular curves on surfaces, from: "Algebraic geometry: Hirzebruch 70 (Warsaw, 1998)" (editors P Pragacz, M Szurek, J Wiśniewski), Contemp. Math. 241, Amer. Math. Soc. (1999) 209
, ,[14] Node polynomials for families: methods and applications, Math. Nachr. 271 (2004) 69
, ,[15] Reduced classes and curve counting on surfaces, in preparation
, ,[16] The invariance of Milnor's number implies the invariance of the topological type, Amer. J. Math. 98 (1976) 67
, ,[17] The algebraic proof of the universality theorem
,[18] Family blowup formula, admissible graphs and the enumeration of singular curves. I, J. Differential Geom. 56 (2000) 381
,[19] Gromov–Witten theory and Donaldson–Thomas theory. I, Compos. Math. 142 (2006) 1263
, , , ,[20] Curves on $K3$ surfaces and modular forms, J. Topol. 3 (2010) 937
, , ,[21] Curve counting via stable pairs in the derived category, Invent. Math. 178 (2009) 407
, ,[22] Stable pairs and BPS invariants, J. Amer. Math. Soc. 23 (2010) 267
, ,[23] Enumerative geometry of singular plane curves, Invent. Math. 97 (1989) 447
,[24] Hilbert schemes of points on a locally planar curve and the Severi strata of its versal deformation
,[25] Résolution simultanée: I – Familles de courbes, from: "Séminaire sur les Singularités des Surfaces" (editors M Demazure, H C Pinkham, B Teissier), Lecture Notes in Math. 777, Springer (1980) 1
,[26] A proof of the Göttsche–Yau–Zaslow formula
,[27] Enumeration of $n$–fold tangent hyperplanes to a surface, J. Algebraic Geom. 4 (1995) 503
,[28] BPS states, string duality, and nodal curves on $K3$, Nuclear Phys. B 471 (1996) 503
, ,Cité par Sources :