A short proof of the Göttsche conjecture
Geometry & topology, Tome 15 (2011) no. 1, pp. 397-406.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that for a sufficiently ample line bundle L on a surface S, the number of δ–nodal curves in a general δ–dimensional linear system is given by a universal polynomial of degree δ in the four numbers L2,L . KS,KS2 and c2(S).

The technique is a study of Hilbert schemes of points on curves on a surface, using the BPS calculus of Pandharipande and the third author [J. Amer. Math. Soc. 23 (2010) 267–297] and the computation of tautological integrals on Hilbert schemes by Ellingsrud, Göttsche and Lehn [J. Algebraic Geom. 10 (2001) 81–100].

We are also able to weaken the ampleness required, from Göttsche’s (5δ1)–very ample to δ–very ample.

DOI : 10.2140/gt.2011.15.397
Keywords: Göttsche conjecture, Goettsche conjecture, counting nodal curves on surfaces

Kool, Martijn 1 ; Shende, Vivek 2 ; Thomas, Richard P 1

1 Department of Mathematics, Imperial College, 180 Queens Gate, London SW7 2AZ, UK
2 Department of Mathematics, Princeton University, Princeton NJ 08540, USA
@article{GT_2011_15_1_a10,
     author = {Kool, Martijn and Shende, Vivek and Thomas, Richard~P},
     title = {A short proof of the {G\"ottsche} conjecture},
     journal = {Geometry & topology},
     pages = {397--406},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2011},
     doi = {10.2140/gt.2011.15.397},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.397/}
}
TY  - JOUR
AU  - Kool, Martijn
AU  - Shende, Vivek
AU  - Thomas, Richard P
TI  - A short proof of the Göttsche conjecture
JO  - Geometry & topology
PY  - 2011
SP  - 397
EP  - 406
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.397/
DO  - 10.2140/gt.2011.15.397
ID  - GT_2011_15_1_a10
ER  - 
%0 Journal Article
%A Kool, Martijn
%A Shende, Vivek
%A Thomas, Richard P
%T A short proof of the Göttsche conjecture
%J Geometry & topology
%D 2011
%P 397-406
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.397/
%R 10.2140/gt.2011.15.397
%F GT_2011_15_1_a10
Kool, Martijn; Shende, Vivek; Thomas, Richard P. A short proof of the Göttsche conjecture. Geometry & topology, Tome 15 (2011) no. 1, pp. 397-406. doi : 10.2140/gt.2011.15.397. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.397/

[1] A Beauville, Counting rational curves on $K3$ surfaces, Duke Math. J. 97 (1999) 99

[2] J Bryan, N C Leung, Generating functions for the number of curves on abelian surfaces, Duke Math. J. 99 (1999) 311

[3] J Bryan, N C Leung, The enumerative geometry of $K3$ surfaces and modular forms, J. Amer. Math. Soc. 13 (2000) 371

[4] L Caporaso, J Harris, Counting plane curves of any genus, Invent. Math. 131 (1998) 345

[5] Y Choi, Enumerative geometry of plane curves, PhD thesis, University of California, Riverside (1999)

[6] P Di Francesco, C Itzykson, Quantum intersection rings, from: "The moduli space of curves (Texel Island, 1994)", Progr. Math. 129, Birkhäuser (1995) 81

[7] S Diaz, J Harris, Ideals associated to deformations of singular plane curves, Trans. Amer. Math. Soc. 309 (1988) 433

[8] G Ellingsrud, L Göttsche, M Lehn, On the cobordism class of the Hilbert scheme of a surface, J. Algebraic Geom. 10 (2001) 81

[9] S Fomin, G Mikhalkin, Labeled floor diagrams for plane curves

[10] L Göttsche, A conjectural generating function for numbers of curves on surfaces, Comm. Math. Phys. 196 (1998) 523

[11] T Kawai, K Yoshioka, String partition functions and infinite products, Adv. Theor. Math. Phys. 4 (2000) 397

[12] M È Kazarian, Multisingularities, cobordisms, and enumerative geometry, Russian Math. Surveys 58 (2003) 665

[13] S L Kleiman, R Piene, Enumerating singular curves on surfaces, from: "Algebraic geometry: Hirzebruch 70 (Warsaw, 1998)" (editors P Pragacz, M Szurek, J Wiśniewski), Contemp. Math. 241, Amer. Math. Soc. (1999) 209

[14] S L Kleiman, R Piene, Node polynomials for families: methods and applications, Math. Nachr. 271 (2004) 69

[15] M Kool, R P Thomas, Reduced classes and curve counting on surfaces, in preparation

[16] L D Tráng, C P Ramanujam, The invariance of Milnor's number implies the invariance of the topological type, Amer. J. Math. 98 (1976) 67

[17] A K Liu, The algebraic proof of the universality theorem

[18] A K Liu, Family blowup formula, admissible graphs and the enumeration of singular curves. I, J. Differential Geom. 56 (2000) 381

[19] D Maulik, N Nekrasov, A Okounkov, R Pandharipande, Gromov–Witten theory and Donaldson–Thomas theory. I, Compos. Math. 142 (2006) 1263

[20] D Maulik, R Pandharipande, R P Thomas, Curves on $K3$ surfaces and modular forms, J. Topol. 3 (2010) 937

[21] R Pandharipande, R P Thomas, Curve counting via stable pairs in the derived category, Invent. Math. 178 (2009) 407

[22] R Pandharipande, R P Thomas, Stable pairs and BPS invariants, J. Amer. Math. Soc. 23 (2010) 267

[23] Z Ran, Enumerative geometry of singular plane curves, Invent. Math. 97 (1989) 447

[24] V Shende, Hilbert schemes of points on a locally planar curve and the Severi strata of its versal deformation

[25] B Teissier, Résolution simultanée: I – Familles de courbes, from: "Séminaire sur les Singularités des Surfaces" (editors M Demazure, H C Pinkham, B Teissier), Lecture Notes in Math. 777, Springer (1980) 1

[26] Y Tzeng, A proof of the Göttsche–Yau–Zaslow formula

[27] I Vainsencher, Enumeration of $n$–fold tangent hyperplanes to a surface, J. Algebraic Geom. 4 (1995) 503

[28] S T Yau, E Zaslow, BPS states, string duality, and nodal curves on $K3$, Nuclear Phys. B 471 (1996) 503

Cité par Sources :