Moduli spaces and braid monodromy types of bidouble covers of the quadric
Geometry & topology, Tome 15 (2011) no. 1, pp. 351-396.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Bidouble covers π: S Q := 1 × 1 of the quadric are parametrized by connected families depending on four positive integers a,b,c,d. In the special case where b = d we call them abc–surfaces.

Such a Galois covering π admits a small perturbation yielding a general 4–tuple covering of Q with branch curve Δ, and a natural Lefschetz fibration obtained from a small perturbation of the composition p1 π.

We prove a more general result implying that the braid monodromy factorization corresponding to Δ determines the three integers a,b,c in the case of abc–surfaces. We introduce a new method in order to distinguish factorizations which are not stably equivalent.

This result is in sharp contrast with a previous result of the first and third author, showing that the mapping class group factorizations corresponding to the respective natural Lefschetz pencils are equivalent for abc–surfaces with the same values of a + c,b. This result hints at the possibility that abc–surfaces with fixed values of a + c,b, although diffeomorphic but not deformation equivalent, might be not canonically symplectomorphic.

DOI : 10.2140/gt.2011.15.351
Keywords: algebraic surface, moduli space, braid monodromy, equivalence of factorizations, symplectomorphism, bidouble cover, Lefschetz pencil

Catanese, Fabrizio 1 ; Lönne, Michael 1 ; Wajnryb, Bronislaw 2

1 Mathematisches Institut, Lehrstuhl Mathematik VIII, Universität Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
2 Department of Mathematics, Rzeszów University of Technology, ul W Pola 2, 35-959 Rzeszów, Poland
@article{GT_2011_15_1_a9,
     author = {Catanese, Fabrizio and L\"onne, Michael and Wajnryb, Bronislaw},
     title = {Moduli spaces and braid monodromy types of bidouble covers of the quadric},
     journal = {Geometry & topology},
     pages = {351--396},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2011},
     doi = {10.2140/gt.2011.15.351},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.351/}
}
TY  - JOUR
AU  - Catanese, Fabrizio
AU  - Lönne, Michael
AU  - Wajnryb, Bronislaw
TI  - Moduli spaces and braid monodromy types of bidouble covers of the quadric
JO  - Geometry & topology
PY  - 2011
SP  - 351
EP  - 396
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.351/
DO  - 10.2140/gt.2011.15.351
ID  - GT_2011_15_1_a9
ER  - 
%0 Journal Article
%A Catanese, Fabrizio
%A Lönne, Michael
%A Wajnryb, Bronislaw
%T Moduli spaces and braid monodromy types of bidouble covers of the quadric
%J Geometry & topology
%D 2011
%P 351-396
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.351/
%R 10.2140/gt.2011.15.351
%F GT_2011_15_1_a9
Catanese, Fabrizio; Lönne, Michael; Wajnryb, Bronislaw. Moduli spaces and braid monodromy types of bidouble covers of the quadric. Geometry & topology, Tome 15 (2011) no. 1, pp. 351-396. doi : 10.2140/gt.2011.15.351. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.351/

[1] D Auroux, S K Donaldson, L Katzarkov, M Yotov, Fundamental groups of complements of plane curves and symplectic invariants, Topology 43 (2004) 1285

[2] D Auroux, L Katzarkov, Branched coverings of $\mathbf{C}\mathrm{P}^2$ and invariants of symplectic $4$–manifolds, Invent. Math. 142 (2000) 631

[3] D Auroux, L Katzarkov, A degree doubling formula for braid monodromies and Lefschetz pencils, Pure Appl. Math. Q. 4 (2008) 237

[4] D Auroux, I Smith, Lefschetz pencils, branched covers and symplectic invariants, from: "Symplectic $4$–manifolds and algebraic surfaces" (editors F Catanese, G Tian), Lecture Notes in Math. 1938, Springer (2008) 1

[5] F Catanese, On the moduli spaces of surfaces of general type, J. Differential Geom. 19 (1984) 483

[6] F Catanese, Automorphisms of rational double points and moduli spaces of surfaces of general type, Compositio Math. 61 (1987) 81

[7] F Catanese, Symplectic structures of algebraic surfaces and deformation

[8] F Catanese, Differentiable and deformation type of algebraic surfaces, real and symplectic structures, from: "Symplectic $4$–manifolds and algebraic surfaces" (editors F Catanese, G Tian), Lecture Notes in Math. 1938, Springer (2008) 55

[9] F Catanese, Canonical symplectic structures and deformations of algebraic surfaces, Commun. Contemp. Math. 11 (2009) 481

[10] F Catanese, M Lönne, B Wajnryb, Moduli spaces of surfaces and monodromy invariants, from: "Proceedings of the Gökova Geometry-Topology Conference 2009" (editors S Akbulut, D Auroux, T Önder), Int. Press (2010) 58

[11] F Catanese, B Wajnryb, The $3$–cuspidal quartic and braid monodromy of degree 4 coverings, from: "Projective varieties with unexpected properties" (editors C Ciliberto, A V Geramita, B Harbourne, R M Miró-Roig, K Ranestad), de Gruyter (2005) 113

[12] F Catanese, B Wajnryb, Diffeomorphism of simply connected algebraic surfaces, J. Differential Geom. 76 (2007) 177

[13] S K Donaldson, The Seiberg–Witten equations and $4$–manifold topology, Bull. Amer. Math. Soc. $($N.S.$)$ 33 (1996) 45

[14] S K Donaldson, Lefschetz pencils on symplectic manifolds, J. Differential Geom. 53 (1999) 205

[15] C Ehresmann, Sur les espaces fibrés différentiables, C. R. Acad. Sci. Paris 224 (1947) 1611

[16] M H Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982) 357

[17] R Friedman, J W Morgan, Algebraic surfaces and $4$–manifolds: some conjectures and speculations, Bull. Amer. Math. Soc. $($N.S.$)$ 18 (1988) 1

[18] R E Gompf, A new construction of symplectic manifolds, Ann. of Math. $(2)$ 142 (1995) 527

[19] R E Gompf, A I Stipsicz, $4$–manifolds and Kirby calculus, Graduate Studies in Math. 20, Amer. Math. Soc. (1999)

[20] J González-Meneses, B Wiest, On the structure of the centralizer of a braid, Ann. Sci. École Norm. Sup. $(4)$ 37 (2004) 729

[21] A Kas, On the handlebody decomposition associated to a Lefschetz fibration, Pacific J. Math. 89 (1980) 89

[22] M Lönne, Fundamental groups of projective discriminant complements, Duke Math. J. 150 (2009) 357

[23] M Lönne, Braid monodromy of some Brieskorn–Pham singularities, Internat. J. Math. 21 (2010) 1047

[24] M Manetti, On some components of moduli space of surfaces of general type, Compositio Math. 92 (1994) 285

[25] M Manetti, Iterated double covers and connected components of moduli spaces, Topology 36 (1997) 745

[26] M Manetti, On the moduli space of diffeomorphic algebraic surfaces, Invent. Math. 143 (2001) 29

[27] B Moishezon, Stable branch curves and braid monodromies, from: "Algebraic geometry (Chicago, Ill., 1980)" (editors A Libgober, P Wagreich), Lecture Notes in Math. 862, Springer (1981) 107

[28] B Moishezon, Algebraic surfaces and the arithmetic of braids. I, from: "Arithmetic and geometry, Vol. II" (editors M Artin, J Tate), Progr. Math. 36, Birkhäuser (1983) 199

[29] B Moishezon, The arithmetic of braids and a statement of Chisini, from: "Geometric topology (Haifa, 1992)" (editors C Gordon, Y Moriah, B Wajnryb), Contemp. Math. 164, Amer. Math. Soc. (1994) 151

[30] B Moishezon, M Teicher, Finite fundamental groups, free over $\mathbf{Z}/c\mathbf{Z}$, for Galois covers of $\mathbf{C{\mathrm P}}^{2}$, Math. Ann. 293 (1992) 749

Cité par Sources :