On discreteness of commensurators
Geometry & topology, Tome 15 (2011) no. 1, pp. 331-350.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We begin by showing that commensurators of Zariski dense subgroups of isometry groups of symmetric spaces of noncompact type are discrete provided that the limit set on the Furstenberg boundary is not invariant under the action of a (virtual) simple factor. In particular for rank one or simple Lie groups, Zariski dense subgroups with nonempty domain of discontinuity have discrete commensurators. This generalizes a Theorem of Greenberg for Kleinian groups. We then prove that for all finitely generated, Zariski dense, infinite covolume discrete subgroups of Isom(3), commensurators are discrete. Together these prove discreteness of commensurators for all known examples of finitely presented, Zariski dense, infinite covolume discrete subgroups of Isom(X) for X an irreducible symmetric space of noncompact type.

DOI : 10.2140/gt.2011.15.331
Keywords: commensurator, Cannon–Thurston map, Kleinian group, limit set

Mj, Mahan 1

1 School of Mathematical Sciences, RKM Vivekananda University, PO Belur Math, Dt Howrah, WB-711202, India
@article{GT_2011_15_1_a8,
     author = {Mj, Mahan},
     title = {On discreteness of commensurators},
     journal = {Geometry & topology},
     pages = {331--350},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2011},
     doi = {10.2140/gt.2011.15.331},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.331/}
}
TY  - JOUR
AU  - Mj, Mahan
TI  - On discreteness of commensurators
JO  - Geometry & topology
PY  - 2011
SP  - 331
EP  - 350
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.331/
DO  - 10.2140/gt.2011.15.331
ID  - GT_2011_15_1_a8
ER  - 
%0 Journal Article
%A Mj, Mahan
%T On discreteness of commensurators
%J Geometry & topology
%D 2011
%P 331-350
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.331/
%R 10.2140/gt.2011.15.331
%F GT_2011_15_1_a8
Mj, Mahan. On discreteness of commensurators. Geometry & topology, Tome 15 (2011) no. 1, pp. 331-350. doi : 10.2140/gt.2011.15.331. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.331/

[1] I Agol, Criteria for virtual fibering, J. Topol. 1 (2008) 269

[2] Y Benoist, Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal. 7 (1997) 1

[3] B Bowditch, Relatively hyperbolic groups, Preprint (1999)

[4] R D Canary, A covering theorem for hyperbolic $3$–manifolds and its applications, Topology 35 (1996) 751

[5] B Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998) 810

[6] A Fathi, F Laudenbach, V Poenaru, Editors, Travaux de Thurston sur les surfaces, Astérisque 66–67, Soc. Math. France (1979) 284

[7] M Feighn, D Mccullough, Finiteness conditions for $3$–manifolds with boundary, Amer. J. Math. 109 (1987) 1155

[8] W J Floyd, Group completions and limit sets of Kleinian groups, Invent. Math. 57 (1980) 205

[9] L Greenberg, Commensurable groups of Moebius transformations, from: "Discontinuous groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973)" (editor L Greenberg), Ann. of Math. Studies 79, Princeton Univ. Press (1974) 227

[10] L Greenberg, Finiteness theorems for Fuchsian and Kleinian groups, from: "Discrete groups and automorphic functions (Proc. Conf., Cambridge, 1975)" (editor W J Harvey), Academic Press (1977) 199

[11] M Gromov, Hyperbolic groups, from: "Essays in group theory" (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[12] M Gromov, Spaces and questions, Geom. Funct. Anal. (2000) 118

[13] S Helgason, Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Math. 34, Amer. Math. Soc. (2001)

[14] J Hempel, $3$–Manifolds, Ann. of Math. Studies 86, Princeton Univ. Press (1976)

[15] M Kapovich, On normal subgroups in the fundamental groups of complex surfaces

[16] C J Leininger, D D Long, A W Reid, Commensurators of non-free finitely generated Kleinian groups

[17] D D Long, A W Reid, Finding fibre faces in finite covers, Math. Res. Lett. 15 (2008) 521

[18] G A Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Math. und ihrer Grenzgebiete (3) 17, Springer (1991)

[19] D Mccullough, Compact submanifolds of $3$–manifolds with boundary, Quart. J. Math. Oxford Ser. $(2)$ 37 (1986) 299

[20] D Mccullough, A Miller, G A Swarup, Uniqueness of cores of noncompact $3$–manifolds, J. London Math. Soc. $(2)$ 32 (1985) 548

[21] Y Minsky, The classification of Kleinian surface groups. I. Models and bounds, Ann. of Math. $(2)$ 171 (2010) 1

[22] M Mj, Cannon–Thurston maps and Kleinian groups

[23] M Mj, Cannon–Thurston maps for surface groups

[24] M Mj, Pattern rigidity and the Hilbert–Smith conjecture

[25] M Mj, Cannon–Thurston maps and bounded geometry, from: "Teichmüller theory and moduli problem" (editors I Biswas, R S Kulkarni, S Mitra), Ramanujan Math. Soc. Lect. Notes Ser. 10, Ramanujan Math. Soc. (2010) 489

[26] G P Scott, Compact submanifolds of $3$–manifolds, J. London Math. Soc. $(2)$ 7 (1973) 246

Cité par Sources :