Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
In this article, we study the rational cohomology rings of Voisin’s Hilbert schemes associated with a symplectic compact four-manifold . We prove that these rings can be universally constructed from and , and that Ruan’s crepant resolution conjecture holds if is a torsion class. Next, we prove that for any almost-complex compact four-manifold , the complex cobordism class of depends only on the complex cobordism class of .
Grivaux, Julien 1
@article{GT_2011_15_1_a7, author = {Grivaux, Julien}, title = {Topological properties of {Hilbert} schemes of almost-complex four-manifolds {II}}, journal = {Geometry & topology}, pages = {261--330}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2011}, doi = {10.2140/gt.2011.15.261}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.261/} }
TY - JOUR AU - Grivaux, Julien TI - Topological properties of Hilbert schemes of almost-complex four-manifolds II JO - Geometry & topology PY - 2011 SP - 261 EP - 330 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.261/ DO - 10.2140/gt.2011.15.261 ID - GT_2011_15_1_a7 ER -
Grivaux, Julien. Topological properties of Hilbert schemes of almost-complex four-manifolds II. Geometry & topology, Tome 15 (2011) no. 1, pp. 261-330. doi : 10.2140/gt.2011.15.261. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.261/
[1] Orbifolds and stringy topology, Cambridge Tracts in Math. 171, Cambridge Univ. Press (2007)
, , ,[2] Analytic cycles on complex manifolds, Topology 1 (1962) 25
, ,[3] The Riemann–Roch theorem for analytic embeddings, Topology 1 (1962) 151
, ,[4] Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983)
,[5] Le théorème de Riemann–Roch, Bull. Soc. Math. France 86 (1958) 97
, ,[6] Description de $\mathrm{Hilb}^{n}C\{x,y\}$, Invent. Math. 41 (1977) 45
,[7] The Douady space of a complex surface, Adv. Math. 151 (2000) 283
, ,[8] Cellular decompositions for nested Hilbert schemes of points, Pacific J. Math. 183 (1998) 39
,[9] A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004) 1
, ,[10] Sur la cohomologie d'un fibré tautologique sur le schéma de Hilbert d'une surface, J. Algebraic Geom. 10 (2001) 247
,[11] Symplectic submanifolds and almost-complex geometry, J. Differential Geom. 44 (1996) 666
,[12] The geometry of four-manifolds, Oxford Math. Monogr., Oxford Science Publ., The Clarendon Press, Oxford Univ. Press (1990)
, ,[13] Commutative algebra with a view toward algebraic geometry, Graduate Texts in Math. 150, Springer (1995)
,[14] On the cobordism class of the Hilbert scheme of a surface, J. Algebraic Geom. 10 (2001) 81
, , ,[15] Orbifold cohomology for global quotients, Duke Math. J. 117 (2003) 197
, ,[16] Algebraic families on an algebraic surface, Amer. J. Math 90 (1968) 511
,[17] The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann. 286 (1990) 193
,[18] Hilbert schemes of zero-dimensional subschemes of smooth varieties, Lecture Notes in Math. 1572, Springer (1994)
,[19] Hilbert schemes of points on surfaces, from: "Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002)" (editor T T Li), Higher Ed. Press (2002) 483
,[20] Theory of Stein spaces, Classics in Math., Springer (2004)
, ,[21] Topological properties of punctual Hilbert schemes of almost-complex fourfolds, to appear in Manuscripta Math.
,[22] Quelques problèmes de géométrie complexe et presque complexe, PhD thesis, Université Pierre et Marie Curie (2009)
,[23] Instantons and affine algebras. I. The Hilbert scheme and vertex operators, Math. Res. Lett. 3 (1996) 275
,[24] Punctual Hilbert schemes, Mem. Amer. Math. Soc. 10, no. 188 (1977)
,[25] Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Invent. Math. 136 (1999) 157
,[26] Symmetric groups and the cup product on the cohomology of Hilbert schemes, Duke Math. J. 110 (2001) 345
, ,[27] The cup product of Hilbert schemes for $K3$ surfaces, Invent. Math. 152 (2003) 305
, ,[28] Generators for the cohomology ring of Hilbert schemes of points on surfaces, Internat. Math. Res. Notices (2001) 1057
, , ,[29] Vertex algebras and the cohomology ring structure of Hilbert schemes of points on surfaces, Math. Ann. 324 (2002) 105
, , ,[30] Stability of the cohomology rings of Hilbert schemes of points on surfaces, J. Reine Angew. Math. 554 (2003) 217
, , ,[31] Division des distributions, from: "Séminaire Schwartz (1959/60), Exp. 25, Unicité du problème de Cauchy. Division des distributions", Faculté des Sciences de Paris (1960) 21
,[32] Ideals of differentiable functions, Tata Institute of Fund. Research Studies in Math. 3, Tata Inst. of Fund. Research (1967)
,[33] On the cobordism ring $\Omega^{*}$ and a complex analogue. I, Amer. J. Math. 82 (1960) 505
,[34] Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. of Math. $(2)$ 145 (1997) 379
,[35] Lectures on Hilbert schemes of points on surfaces, Univ. Lecture Series 18, Amer. Math. Soc. (1999)
,[36] Topological invariance of rational classes of Pontrjagin, Dokl. Akad. Nauk SSSR 163 (1965) 298
,[37] Hilbert schemes and symmetric products: a dictionary, from: "Orbifolds in mathematics and physics (Madison, WI, 2001)" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 233
, ,[38] The cohomology ring of crepant resolutions of orbifolds, from: "Gromov-Witten theory of spin curves and orbifolds" (editors T J Jarvis, T Kimura, A Vaintrob), Contemp. Math. 403, Amer. Math. Soc. (2006) 117
,[39] On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. USA 42 (1956) 359
,[40] Basic algebraic geometry. 1. Varieties in projective space, Springer (1994)
,[41] The variety of complete pairs of zero-dimensional subschemes of an algebraic surface, Izv. Ross. Akad. Nauk Ser. Mat. 61 (1997) 153
,[42] Orbifold cohomology of the symmetric product, Comm. Anal. Geom. 13 (2005) 113
,[43] On the Hilbert scheme of points of an almost complex fourfold, Ann. Inst. Fourier (Grenoble) 50 (2000) 689
,[44] On the punctual Hilbert scheme of a symplectic fourfold, from: "Symposium in Honor of C. H. Clemens (Salt Lake City, UT, 2000)" (editors A Bertram, J A Carlson, H Kley), Contemp. Math. 312, Amer. Math. Soc. (2002) 265
,Cité par Sources :