Topological properties of Hilbert schemes of almost-complex four-manifolds II
Geometry & topology, Tome 15 (2011) no. 1, pp. 261-330.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In this article, we study the rational cohomology rings of Voisin’s Hilbert schemes X[n] associated with a symplectic compact four-manifold X. We prove that these rings can be universally constructed from H(X, ) and c1(X), and that Ruan’s crepant resolution conjecture holds if c1(X) is a torsion class. Next, we prove that for any almost-complex compact four-manifold X, the complex cobordism class of X[n] depends only on the complex cobordism class of X.

DOI : 10.2140/gt.2011.15.261
Keywords: Hilbert schemes of points, symplectic four-manifold, almost-complex four-manifold, cohomological crepant resolution conjecture

Grivaux, Julien 1

1 Centre de Mathématiques et Informatique, UMR CNRS 6632 (LATP), Université de Provence, 39 rue Frédéric Joliot-Curie, 13453 Cedex 13 Marseille, France
@article{GT_2011_15_1_a7,
     author = {Grivaux, Julien},
     title = {Topological properties of {Hilbert} schemes of almost-complex four-manifolds {II}},
     journal = {Geometry & topology},
     pages = {261--330},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2011},
     doi = {10.2140/gt.2011.15.261},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.261/}
}
TY  - JOUR
AU  - Grivaux, Julien
TI  - Topological properties of Hilbert schemes of almost-complex four-manifolds II
JO  - Geometry & topology
PY  - 2011
SP  - 261
EP  - 330
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.261/
DO  - 10.2140/gt.2011.15.261
ID  - GT_2011_15_1_a7
ER  - 
%0 Journal Article
%A Grivaux, Julien
%T Topological properties of Hilbert schemes of almost-complex four-manifolds II
%J Geometry & topology
%D 2011
%P 261-330
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.261/
%R 10.2140/gt.2011.15.261
%F GT_2011_15_1_a7
Grivaux, Julien. Topological properties of Hilbert schemes of almost-complex four-manifolds II. Geometry & topology, Tome 15 (2011) no. 1, pp. 261-330. doi : 10.2140/gt.2011.15.261. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.261/

[1] A Adem, J Leida, Y Ruan, Orbifolds and stringy topology, Cambridge Tracts in Math. 171, Cambridge Univ. Press (2007)

[2] M F Atiyah, F Hirzebruch, Analytic cycles on complex manifolds, Topology 1 (1962) 25

[3] M F Atiyah, F Hirzebruch, The Riemann–Roch theorem for analytic embeddings, Topology 1 (1962) 151

[4] A Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983)

[5] A Borel, J P Serre, Le théorème de Riemann–Roch, Bull. Soc. Math. France 86 (1958) 97

[6] J Briançon, Description de $\mathrm{Hilb}^{n}C\{x,y\}$, Invent. Math. 41 (1977) 45

[7] M A A De Cataldo, L Migliorini, The Douady space of a complex surface, Adv. Math. 151 (2000) 283

[8] J Cheah, Cellular decompositions for nested Hilbert schemes of points, Pacific J. Math. 183 (1998) 39

[9] W Chen, Y Ruan, A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004) 1

[10] G Danila, Sur la cohomologie d'un fibré tautologique sur le schéma de Hilbert d'une surface, J. Algebraic Geom. 10 (2001) 247

[11] S K Donaldson, Symplectic submanifolds and almost-complex geometry, J. Differential Geom. 44 (1996) 666

[12] S K Donaldson, P B Kronheimer, The geometry of four-manifolds, Oxford Math. Monogr., Oxford Science Publ., The Clarendon Press, Oxford Univ. Press (1990)

[13] D Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Math. 150, Springer (1995)

[14] G Ellingsrud, L Göttsche, M Lehn, On the cobordism class of the Hilbert scheme of a surface, J. Algebraic Geom. 10 (2001) 81

[15] B Fantechi, L Göttsche, Orbifold cohomology for global quotients, Duke Math. J. 117 (2003) 197

[16] J Fogarty, Algebraic families on an algebraic surface, Amer. J. Math 90 (1968) 511

[17] L Göttsche, The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann. 286 (1990) 193

[18] L Göttsche, Hilbert schemes of zero-dimensional subschemes of smooth varieties, Lecture Notes in Math. 1572, Springer (1994)

[19] L Göttsche, Hilbert schemes of points on surfaces, from: "Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002)" (editor T T Li), Higher Ed. Press (2002) 483

[20] H Grauert, R Remmert, Theory of Stein spaces, Classics in Math., Springer (2004)

[21] J Grivaux, Topological properties of punctual Hilbert schemes of almost-complex fourfolds, to appear in Manuscripta Math.

[22] J Grivaux, Quelques problèmes de géométrie complexe et presque complexe, PhD thesis, Université Pierre et Marie Curie (2009)

[23] I Grojnowski, Instantons and affine algebras. I. The Hilbert scheme and vertex operators, Math. Res. Lett. 3 (1996) 275

[24] A A Iarrobino, Punctual Hilbert schemes, Mem. Amer. Math. Soc. 10, no. 188 (1977)

[25] M Lehn, Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Invent. Math. 136 (1999) 157

[26] M Lehn, C Sorger, Symmetric groups and the cup product on the cohomology of Hilbert schemes, Duke Math. J. 110 (2001) 345

[27] M Lehn, C Sorger, The cup product of Hilbert schemes for $K3$ surfaces, Invent. Math. 152 (2003) 305

[28] W P Li, Z Qin, W Wang, Generators for the cohomology ring of Hilbert schemes of points on surfaces, Internat. Math. Res. Notices (2001) 1057

[29] W P Li, Z Qin, W Wang, Vertex algebras and the cohomology ring structure of Hilbert schemes of points on surfaces, Math. Ann. 324 (2002) 105

[30] W P Li, Z Qin, W Wang, Stability of the cohomology rings of Hilbert schemes of points on surfaces, J. Reine Angew. Math. 554 (2003) 217

[31] B Malgrange, Division des distributions, from: "Séminaire Schwartz (1959/60), Exp. 25, Unicité du problème de Cauchy. Division des distributions", Faculté des Sciences de Paris (1960) 21

[32] B Malgrange, Ideals of differentiable functions, Tata Institute of Fund. Research Studies in Math. 3, Tata Inst. of Fund. Research (1967)

[33] J Milnor, On the cobordism ring $\Omega^{*}$ and a complex analogue. I, Amer. J. Math. 82 (1960) 505

[34] H Nakajima, Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. of Math. $(2)$ 145 (1997) 379

[35] H Nakajima, Lectures on Hilbert schemes of points on surfaces, Univ. Lecture Series 18, Amer. Math. Soc. (1999)

[36] S P Novikov, Topological invariance of rational classes of Pontrjagin, Dokl. Akad. Nauk SSSR 163 (1965) 298

[37] Z Qin, W Wang, Hilbert schemes and symmetric products: a dictionary, from: "Orbifolds in mathematics and physics (Madison, WI, 2001)" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 233

[38] Y Ruan, The cohomology ring of crepant resolutions of orbifolds, from: "Gromov-Witten theory of spin curves and orbifolds" (editors T J Jarvis, T Kimura, A Vaintrob), Contemp. Math. 403, Amer. Math. Soc. (2006) 117

[39] I Satake, On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. USA 42 (1956) 359

[40] I R Shafarevich, Basic algebraic geometry. 1. Varieties in projective space, Springer (1994)

[41] A S Tikhomirov, The variety of complete pairs of zero-dimensional subschemes of an algebraic surface, Izv. Ross. Akad. Nauk Ser. Mat. 61 (1997) 153

[42] B Uribe, Orbifold cohomology of the symmetric product, Comm. Anal. Geom. 13 (2005) 113

[43] C Voisin, On the Hilbert scheme of points of an almost complex fourfold, Ann. Inst. Fourier (Grenoble) 50 (2000) 689

[44] C Voisin, On the punctual Hilbert scheme of a symplectic fourfold, from: "Symposium in Honor of C. H. Clemens (Salt Lake City, UT, 2000)" (editors A Bertram, J A Carlson, H Kley), Contemp. Math. 312, Amer. Math. Soc. (2002) 265

Cité par Sources :