Counting lattice points in compactified moduli spaces of curves
Geometry & topology, Tome 15 (2011) no. 4, pp. 2321-2350.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We define and count lattice points in the moduli space ¯g,n of stable genus g curves with n labeled points. This extends a construction of the second author for the uncompactified moduli space g,n. The enumeration produces polynomials whose top degree coefficients are tautological intersection numbers on ¯g,n and whose constant term is the orbifold Euler characteristic of ¯g,n. We prove a recursive formula which can be used to effectively calculate these polynomials. One consequence of these results is a simple recursion relation for the orbifold Euler characteristic of ¯g,n.

DOI : 10.2140/gt.2011.15.2321
Keywords: moduli space, stable maps, Euler characteristic

Do, Norman 1 ; Norbury, Paul 1

1 Department of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia
@article{GT_2011_15_4_a13,
     author = {Do, Norman and Norbury, Paul},
     title = {Counting lattice points in compactified moduli spaces of curves},
     journal = {Geometry & topology},
     pages = {2321--2350},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2011},
     doi = {10.2140/gt.2011.15.2321},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2321/}
}
TY  - JOUR
AU  - Do, Norman
AU  - Norbury, Paul
TI  - Counting lattice points in compactified moduli spaces of curves
JO  - Geometry & topology
PY  - 2011
SP  - 2321
EP  - 2350
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2321/
DO  - 10.2140/gt.2011.15.2321
ID  - GT_2011_15_4_a13
ER  - 
%0 Journal Article
%A Do, Norman
%A Norbury, Paul
%T Counting lattice points in compactified moduli spaces of curves
%J Geometry & topology
%D 2011
%P 2321-2350
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2321/
%R 10.2140/gt.2011.15.2321
%F GT_2011_15_4_a13
Do, Norman; Norbury, Paul. Counting lattice points in compactified moduli spaces of curves. Geometry & topology, Tome 15 (2011) no. 4, pp. 2321-2350. doi : 10.2140/gt.2011.15.2321. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2321/

[1] G Bini, J Harer, Euler characteristics of moduli spaces of curves, J. Eur. Math. Soc. $($JEMS$)$ 13 (2011) 487

[2] B Eynard, N Orantin, Invariants of algebraic curves and topological expansion, Commun. Number Theory Phys. 1 (2007) 347

[3] I P Goulden, S Litsyn, V Shevelev, On a sequence arising in algebraic geometry, J. Integer Seq. 8 (2005)

[4] J Harer, D Zagier, The Euler characteristic of the moduli space of curves, Invent. Math. 85 (1986) 457

[5] M Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992) 1

[6] Y I Manin, Generating functions in algebraic geometry and sums over trees, from: "The moduli space of curves (Texel Island, 1994)", Progr. Math. 129, Birkhäuser (1995) 401

[7] M Mulase, M Penkava, Ribbon graphs, quadratic differentials on Riemann surfaces, and algebraic curves defined over $\wwbar{\mathbf{Q}}$, Asian J. Math. 2 (1998) 875

[8] P Norbury, Counting lattice points in the moduli space of curves, Math. Res. Lett. 17 (2010) 467

[9] P Norbury, Cell decompositions of moduli space, lattice points and Hurwitz problems, to appear in Handbook of Moduli

[10] P Norbury, String and dilaton equations for counting lattice points in the moduli space of curves, to appear in Trans. Amer. Math. Soc.

[11] R C Penner, Perturbative series and the moduli space of Riemann surfaces, J. Differential Geom. 27 (1988) 35

[12] K Strebel, Quadratic differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 5, Springer (1984)

[13] E Witten, Two-dimensional gravity and intersection theory on moduli space, from: "Surveys in differential geometry (Cambridge, MA, 1990)", Lehigh Univ. (1991) 243

[14] D Zvonkine, Strebel differentials on stable curves and Kontsevich's proof of Witten's conjecture

Cité par Sources :