Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We define and count lattice points in the moduli space of stable genus curves with labeled points. This extends a construction of the second author for the uncompactified moduli space . The enumeration produces polynomials whose top degree coefficients are tautological intersection numbers on and whose constant term is the orbifold Euler characteristic of . We prove a recursive formula which can be used to effectively calculate these polynomials. One consequence of these results is a simple recursion relation for the orbifold Euler characteristic of .
Do, Norman 1 ; Norbury, Paul 1
@article{GT_2011_15_4_a13, author = {Do, Norman and Norbury, Paul}, title = {Counting lattice points in compactified moduli spaces of curves}, journal = {Geometry & topology}, pages = {2321--2350}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2011}, doi = {10.2140/gt.2011.15.2321}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2321/} }
TY - JOUR AU - Do, Norman AU - Norbury, Paul TI - Counting lattice points in compactified moduli spaces of curves JO - Geometry & topology PY - 2011 SP - 2321 EP - 2350 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2321/ DO - 10.2140/gt.2011.15.2321 ID - GT_2011_15_4_a13 ER -
Do, Norman; Norbury, Paul. Counting lattice points in compactified moduli spaces of curves. Geometry & topology, Tome 15 (2011) no. 4, pp. 2321-2350. doi : 10.2140/gt.2011.15.2321. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2321/
[1] Euler characteristics of moduli spaces of curves, J. Eur. Math. Soc. $($JEMS$)$ 13 (2011) 487
, ,[2] Invariants of algebraic curves and topological expansion, Commun. Number Theory Phys. 1 (2007) 347
, ,[3] On a sequence arising in algebraic geometry, J. Integer Seq. 8 (2005)
, , ,[4] The Euler characteristic of the moduli space of curves, Invent. Math. 85 (1986) 457
, ,[5] Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992) 1
,[6] Generating functions in algebraic geometry and sums over trees, from: "The moduli space of curves (Texel Island, 1994)", Progr. Math. 129, Birkhäuser (1995) 401
,[7] Ribbon graphs, quadratic differentials on Riemann surfaces, and algebraic curves defined over $\wwbar{\mathbf{Q}}$, Asian J. Math. 2 (1998) 875
, ,[8] Counting lattice points in the moduli space of curves, Math. Res. Lett. 17 (2010) 467
,[9] Cell decompositions of moduli space, lattice points and Hurwitz problems, to appear in Handbook of Moduli
,[10] String and dilaton equations for counting lattice points in the moduli space of curves, to appear in Trans. Amer. Math. Soc.
,[11] Perturbative series and the moduli space of Riemann surfaces, J. Differential Geom. 27 (1988) 35
,[12] Quadratic differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 5, Springer (1984)
,[13] Two-dimensional gravity and intersection theory on moduli space, from: "Surveys in differential geometry (Cambridge, MA, 1990)", Lehigh Univ. (1991) 243
,[14] Strebel differentials on stable curves and Kontsevich's proof of Witten's conjecture
,Cité par Sources :