Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove three facts about intrinsic geometry of surfaces in a normed (Minkowski) space. When put together, these facts demonstrate a rather intriguing picture. We show that (1) geodesics on saddle surfaces (in a space of any dimension) behave as they are expected to: they have no conjugate points and thus minimize length in their homotopy class; (2) in contrast, every two-dimensional Finsler manifold can be locally embedded as a saddle surface in a –dimensional space; and (3) geodesics on convex surfaces in a –dimensional space also behave as they are expected to: on a complete strictly convex surface, no complete geodesic minimizes the length globally.
Burago, Dmitri 1 ; Ivanov, Sergei 2
@article{GT_2011_15_4_a11, author = {Burago, Dmitri and Ivanov, Sergei}, title = {On intrinsic geometry of surfaces in normed spaces}, journal = {Geometry & topology}, pages = {2275--2298}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2011}, doi = {10.2140/gt.2011.15.2275}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2275/} }
TY - JOUR AU - Burago, Dmitri AU - Ivanov, Sergei TI - On intrinsic geometry of surfaces in normed spaces JO - Geometry & topology PY - 2011 SP - 2275 EP - 2298 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2275/ DO - 10.2140/gt.2011.15.2275 ID - GT_2011_15_4_a11 ER -
Burago, Dmitri; Ivanov, Sergei. On intrinsic geometry of surfaces in normed spaces. Geometry & topology, Tome 15 (2011) no. 4, pp. 2275-2298. doi : 10.2140/gt.2011.15.2275. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2275/
[1] An introduction to Riemann–Finsler geometry, Graduate Texts in Math. 200, Springer (2000)
, , ,[2] Approximating shortest path for the skew lines problem in time doubly logarithmic in 1/epsilon, Theoret. Comput. Sci. 315 (2004) 371
, , ,[3] Isometric embeddings of Finsler manifolds, Algebra i Analiz 5 (1993) 179
, ,[4] Minimal-length embeddings of braids into $\mathbb{R}^3$ with fixed endpoints, MathOverflow (2010)
, ,[5] The two classes of $k$–dimensional surfaces in $n$–dimensional Euclidean space, Sibirsk. Mat. Ž. 10 (1969) 459
,[6] On Finsler geometry of submanifolds, Math. Ann. 311 (1998) 549
,Cité par Sources :