Strongly contracting geodesics in Outer Space
Geometry & topology, Tome 15 (2011) no. 4, pp. 2181-2233.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study the Lipschitz metric on Outer Space and prove that fully irreducible elements of Out(Fn) act by hyperbolic isometries with axes which are strongly contracting. As a corollary, we prove that the axes of fully irreducible automorphisms in the Cayley graph of Out(Fn) are Morse, meaning that a quasi-geodesic with endpoints on the axis stays within a bounded distance from the axis.

DOI : 10.2140/gt.2011.15.2181
Classification : 20E05, 20E36, 20F65

Algom-Kfir, Yael 1

1 Department of Mathematics, Yale University, PO Box 208283, New Haven CT 06511, USA
@article{GT_2011_15_4_a9,
     author = {Algom-Kfir, Yael},
     title = {Strongly contracting geodesics in {Outer} {Space}},
     journal = {Geometry & topology},
     pages = {2181--2233},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2011},
     doi = {10.2140/gt.2011.15.2181},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2181/}
}
TY  - JOUR
AU  - Algom-Kfir, Yael
TI  - Strongly contracting geodesics in Outer Space
JO  - Geometry & topology
PY  - 2011
SP  - 2181
EP  - 2233
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2181/
DO  - 10.2140/gt.2011.15.2181
ID  - GT_2011_15_4_a9
ER  - 
%0 Journal Article
%A Algom-Kfir, Yael
%T Strongly contracting geodesics in Outer Space
%J Geometry & topology
%D 2011
%P 2181-2233
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2181/
%R 10.2140/gt.2011.15.2181
%F GT_2011_15_4_a9
Algom-Kfir, Yael. Strongly contracting geodesics in Outer Space. Geometry & topology, Tome 15 (2011) no. 4, pp. 2181-2233. doi : 10.2140/gt.2011.15.2181. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2181/

[1] Y Algom-Kfir, The Lipschitz metric on Outer Space, PhD thesis, University of Utah (2010)

[2] Y Algom-Kfir, M Bestvina, Asymmetry of Outer Space, Geom. Dedicata (to appear)

[3] J A Behrstock, Asymptotic geometry of the mapping class group and Teichmüller space, Geom. Topol. 10 (2006) 1523

[4] M Bestvina, A bers–like proof of the existence of train tracks for free group automorphisms

[5] M Bestvina, M Feighn, Outer limits, preprint (1994)

[6] M Bestvina, M Feighn, The topology at infinity of $\mathrm{Out}(F_n)$, Invent. Math. 140 (2000) 651

[7] M Bestvina, M Feighn, M Handel, Laminations, trees, and irreducible automorphisms of free groups, Geom. Funct. Anal. 7 (1997) 215

[8] M Bestvina, M Feighn, M Handel, The Tits alternative for $\mathrm{Out}(F_n)$ I: Dynamics of exponentially-growing automorphisms, Ann. of Math. $(2)$ 151 (2000) 517

[9] M Bestvina, K Fujiwara, A characterization of higher rank symmetric spaces via bounded cohomology, Geom. Funct. Anal. 19 (2009) 11

[10] M Bestvina, M Handel, Train tracks and automorphisms of free groups, Ann. of Math. $(2)$ 135 (1992) 1

[11] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften 319, Springer (1999)

[12] Y E Choi, K Rafi, Comparison between Teichmüller and Lipschitz metrics, J. Lond. Math. Soc. $(2)$ 76 (2007) 739

[13] M M Cohen, M Lustig, Very small group actions on $\mathbb{R}$–trees and Dehn twist automorphisms, Topology 34 (1995) 575

[14] D Cooper, Automorphisms of free groups have finitely generated fixed point sets, J. Algebra 111 (1987) 453

[15] M Culler, J W Morgan, Group actions on $\mathbb{R}$–trees, Proc. London Math. Soc. $(3)$ 55 (1987) 571

[16] M Culler, K Vogtmann, Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986) 91

[17] C Druţu, S Mozes, M Sapir, Divergence in lattices in semisimple Lie groups and graphs of groups, Trans. Amer. Math. Soc. 362 (2010) 2451

[18] C Druţu, M Sapir, Tree-graded spaces and asymptotic cones of groups, Topology 44 (2005) 959

[19] M Duchin, K Rafi, Divergence of geodesics in Teich\”muller space and the mapping class group

[20] S Francaviglia, A Martino, Metric properties of Outer Space

[21] D Gaboriau, A Jaeger, G Levitt, M Lustig, An index for counting fixed points of automorphisms of free groups, Duke Math. J. 93 (1998) 425

[22] U Hamenstaedt, Lines of minima in Outer Space

[23] M Handel, L Mosher, Axes in Outer Space

[24] M Handel, L Mosher, Parageometric outer automorphisms of free groups, Trans. Amer. Math. Soc. 359 (2007) 3153

[25] A Lenzhen, K Rafi, J Tao, Bounded combinatorics and the Lipschitz metric on Teichmüller space

[26] G Levitt, M Lustig, Irreducible automorphisms of $F_n$ have north-south dynamics on compactified Outer Space, J. Inst. Math. Jussieu 2 (2003) 59

[27] R Martin, Non-uniquely ergodic foliations of thin-type, measured currents and automorphisms of free groups, PhD thesis, University of California, Los Angeles (1995)

[28] H Masur, On a class of geodesics in Teichmüller space, Ann. of Math. $(2)$ 102 (1975) 205

[29] H A Masur, M Wolf, Teichmüller space is not Gromov hyperbolic, Ann. Acad. Sci. Fenn. Ser. A I Math. 20 (1995) 259

[30] Y N Minsky, Quasi-projections in Teichmüller space, J. Reine Angew. Math. 473 (1996) 121

[31] F Paulin, The Gromov topology on $\mathbb{R}$–trees, Topology Appl. 32 (1989) 197

[32] W Thurston, Minimal stretch maps between hyperbolic surfaces

[33] J H C Whitehead, On certain sets of elements in a free group, Proc. London Math. Soc. 41 (1936) 48

Cité par Sources :