Asymptotics of the colored Jones function of a knot
Geometry & topology, Tome 15 (2011) no. 4, pp. 2135-2180.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

To a knot in 3–space, one can associate a sequence of Laurent polynomials, whose n–th term is the n–th colored Jones polynomial. The paper is concerned with the asymptotic behavior of the value of the n–th colored Jones polynomial at eαn, when α is a fixed complex number and n tends to infinity. We analyze this asymptotic behavior to all orders in 1n when α is a sufficiently small complex number. In addition, we give upper bounds for the coefficients and degree of the n–th colored Jones polynomial, with applications to upper bounds in the Generalized Volume Conjecture. Work of Agol, Dunfield, Storm and W Thurston implies that our bounds are asymptotically optimal. Moreover, we give results for the Generalized Volume Conjecture when α is near 2πi. Our proofs use crucially the cyclotomic expansion of the colored Jones function, due to Habiro.

DOI : 10.2140/gt.2011.15.2135
Keywords: hyperbolic volume conjecture, colored Jones function, Jones polynomial, $R$–matrices, regular ideal octahedron, weave, hyperbolic geometry, Catalan's constant, Borromean rings, cyclotomic expansion, loop expansion, asymptotic expansion, WKB, $q$–difference equations, perturbation theory, Kontsevich integral

Garoufalidis, Stavros 1 ; Lê, Thang T Q 1

1 School of Mathematics, Georgia Institute of Technology, Atlanta GA 30332-0160, USA
@article{GT_2011_15_4_a8,
     author = {Garoufalidis, Stavros and L\^e, Thang~T~Q},
     title = {Asymptotics of the colored {Jones} function of a knot},
     journal = {Geometry & topology},
     pages = {2135--2180},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2011},
     doi = {10.2140/gt.2011.15.2135},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2135/}
}
TY  - JOUR
AU  - Garoufalidis, Stavros
AU  - Lê, Thang T Q
TI  - Asymptotics of the colored Jones function of a knot
JO  - Geometry & topology
PY  - 2011
SP  - 2135
EP  - 2180
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2135/
DO  - 10.2140/gt.2011.15.2135
ID  - GT_2011_15_4_a8
ER  - 
%0 Journal Article
%A Garoufalidis, Stavros
%A Lê, Thang T Q
%T Asymptotics of the colored Jones function of a knot
%J Geometry & topology
%D 2011
%P 2135-2180
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2135/
%R 10.2140/gt.2011.15.2135
%F GT_2011_15_4_a8
Garoufalidis, Stavros; Lê, Thang T Q. Asymptotics of the colored Jones function of a knot. Geometry & topology, Tome 15 (2011) no. 4, pp. 2135-2180. doi : 10.2140/gt.2011.15.2135. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2135/

[1] I Agol, P A Storm, W P Thurston, Lower bounds on volumes of hyperbolic Haken $3$-manifolds, J. Amer. Math. Soc. 20 (2007) 1053

[2] G E Andrews, The theory of partitions, Cambridge Math. Library, Cambridge Univ. Press (1998)

[3] D Bar-Natan, S Garoufalidis, On the Melvin–Morton–Rozansky conjecture, Invent. Math. 125 (1996) 103

[4] D Cooper, M Culler, H Gillet, D D Long, P B Shalen, Plane curves associated to character varieties of $3$–manifolds, Invent. Math. 118 (1994) 47

[5] N Dunfield, Cyclic surgery, degrees of maps of character curves, and volume rigidity for hyperbolic manifolds, Invent. Math. 136 (1999) 623

[6] J L Dupont, C K Zickert, A dilogarithmic formula for the Cheeger–Chern–Simons class, Geom. Topol. 10 (2006) 1347

[7] S Garoufalidis, Beads: from Lie algebras to Lie groups

[8] S Garoufalidis, J S Geronimo, Asymptotics of $q$–difference equations, from: "Primes and knots" (editors T Kohno, M Morishita), Contemp. Math. 416, Amer. Math. Soc. (2006) 83

[9] S Garoufalidis, A Kricker, A rational noncommutative invariant of boundary links, Geom. Topol. 8 (2004) 115

[10] S Garoufalidis, T T Q Lê, The colored Jones function is $q$–holonomic, Geom. Topol. 9 (2005) 1253

[11] S Garoufalidis, L Rozansky, The loop expansion of the Kontsevich integral, the null-move and $S$–equivalence, Topology 43 (2004) 1183

[12] S Garoufalidis, X Sun, The $C$–polynomial of a knot, Algebr. Geom. Topol. 6 (2006) 1623

[13] S Gukov, Three-dimensional quantum gravity, Chern–Simons theory, and the A-polynomial, Comm. Math. Phys. 255 (2005) 577

[14] K Habiro, On the colored Jones polynomials of some simple links, from: "Recent progress towards the volume conjecture (Japanese) (Kyoto, 2000)", Sūrikaisekikenkyūsho Kōkyūroku 1172 (2000) 34

[15] K Habiro, A unified Witten–Reshetikhin–Turaev invariant for integral homology spheres, Invent. Math. 171 (2008) 1

[16] E Hille, Analytic function theory, Vol. II, Intro. to Higher Math., Ginn and Co. (1962)

[17] V F R Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. $(2)$ 126 (1987) 335

[18] R M Kashaev, The hyperbolic volume of knots from the quantum dilogarithm, Lett. Math. Phys. 39 (1997) 269

[19] R Kirby, P Melvin, The $3$–manifold invariants of Witten and Reshetikhin–Turaev for $\mathrm{sl}(2,\mathbf{C})$, Invent. Math. 105 (1991) 473

[20] M Lackenby, The volume of hyperbolic alternating link complements, Proc. London Math. Soc. $(3)$ 88 (2004) 204

[21] T T Q Lê, Integrality and symmetry of quantum link invariants, Duke Math. J. 102 (2000) 273

[22] T T Q Lê, The colored Jones polynomial and the $A$–polynomial of knots, Adv. Math. 207 (2006) 782

[23] K Mahler, An application of Jensen's formula to polynomials, Mathematika 7 (1960) 98

[24] H Murakami, Some limits of the colored Jones polynomials of the figure-eight knot, Kyungpook Math. J. 44 (2004) 369

[25] H Murakami, J Murakami, The colored Jones polynomials and the simplicial volume of a knot, Acta Math. 186 (2001) 85

[26] F W J Olver, Asymptotics and special functions, AKP Classics, A K Peters Ltd. (1997)

[27] J G Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Math. 149, Springer (2006)

[28] N Y Reshetikhin, V G Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990) 1

[29] L Rozansky, A universal $U(1)$–rcc invariant of links and rationality conjecture

[30] L Rozansky, The universal $R$–matrix, Burau representation, and the Melvin–Morton expansion of the colored Jones polynomial, Adv. Math. 134 (1998) 1

[31] J L Schiff, Normal families, Universitext, Springer (1993)

[32] W P Thurston, The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Lecture Notes (1979)

[33] V G Turaev, Quantum invariants of knots and $3$–manifolds, de Gruyter Studies in Math. 18, de Gruyter (1994)

[34] R Van Der Veen, Proof of the volume conjecture for Whitehead chains, Acta Math. Vietnam. 33 (2008) 421

[35] E Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989) 351

Cité par Sources :