Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a nearly Kähler –manifold, that is, an –manifold with –form and Hermitian form which satisfies , for a nonzero real constant . We develop an analogue of the Kähler relations on , proving several useful identities for various intrinsic Laplacians on . When is compact, these identities give powerful results about cohomology of . We show that harmonic forms on admit a Hodge decomposition, and prove that unless or or .
Verbitsky, Misha 1
@article{GT_2011_15_4_a7, author = {Verbitsky, Misha}, title = {Hodge theory on nearly {K\"ahler} manifolds}, journal = {Geometry & topology}, pages = {2111--2133}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2011}, doi = {10.2140/gt.2011.15.2111}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2111/} }
Verbitsky, Misha. Hodge theory on nearly Kähler manifolds. Geometry & topology, Tome 15 (2011) no. 4, pp. 2111-2133. doi : 10.2140/gt.2011.15.2111. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2111/
[1] Branes at conical singularities and holography, Adv. Theor. Math. Phys. 2 (1998)
, , , ,[2] Chiral fermions from manifolds of $G_2$ holonomy
, ,[3] $M$–theory dynamics on a manifold of $G_2$ holonomy, Adv. Theor. Math. Phys. 6 (2002) 1
, ,[4] Real Killing spinors and holonomy, Comm. Math. Phys. 154 (1993) 509
,[5] Twistors and Killing spinors on Riemannian manifolds, Teubner-Texte zur Math. 124, Teubner Verlag (1991) 180
, , , ,[6] Classification des variétés approximativement kähleriennes homogènes, Ann. Global Anal. Geom. 27 (2005) 201
,[7] Einstein metrics via intrinsic or parallel torsion, Math. Z. 247 (2004) 513
, ,[8] Twistorial construction of harmonic maps of surfaces into four-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. $(4)$ 12 (1985)
, ,[9] Nearly Kähler and nearly parallel $G_2$–structures on spheres, Arch. Math. $($Brno$)$ 42 (2006) 241
,[10] Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math. 6 (2002) 303
, ,[11] Minimal varieties and almost Hermitian submanifolds, Michigan Math. J. 12 (1965) 273
,[12] Nearly Kähler manifolds, J. Differential Geometry 4 (1970) 283
,[13] Weak holonomy groups, Math. Z. 123 (1971) 290
,[14] The structure of nearly Kähler manifolds, Math. Ann. 223 (1976) 233
,[15] Principles of algebraic geometry, Pure and Applied Math., Wiley-Interscience (1978)
, ,[16] Stable forms and special metrics, from: "Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000)" (editors M Fernández, J A Wolf), Contemp. Math. 288, Amer. Math. Soc. (2001) 70
,[17] Connections with torsion, parallel spinors and geometry of $\mathrm{{S}pin}(7)$ manifolds, Math. Res. Lett. 11 (2004) 171
,[18] The signature theorem for $V$–manifolds, Topology 17 (1978) 75
,[19] The Riemann–Roch theorem for complex $V$–manifolds, Osaka J. Math. 16 (1979) 151
,[20] The index of elliptic operators over $V$–manifolds, Nagoya Math. J. 84 (1981) 135
,[21] $K$–spaces of maximal rank, Mat. Zametki 22 (1977) 465
,[22] Foundations of differential geometry, Vol. II, Interscience Tracts in Pure and Applied Math. 15, Wiley-Interscience (1969)
, ,[23] Unit Killing vector fields on nearly Kähler manifolds, Internat. J. Math. 16 (2005) 281
, , ,[24] Deformations of nearly Kähler structures, Pacific J. Math. 235 (2008) 57
, , ,[25] Structures presque hermitiennes sur des espaces twistoriels et leurs types, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987) 307
,[26] Nearly Kähler geometry and Riemannian foliations, Asian J. Math. 6 (2002) 481
,[27] On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A. 42 (1956) 359
,[28] The Gauss-Bonnet theorem for $V$–manifolds, J. Math. Soc. Japan 9 (1957) 464
,[29] Hyper-Kähler manifolds with torsion, supersymmetry and Hodge theory, Asian J. Math. 6 (2002) 679
,[30] Theorems on the vanishing of cohomology for locally conformally hyper-Kähler manifolds, Tr. Mat. Inst. Steklova 246 (2004) 64
,[31] An intrinsic volume functional on almost complex $6$–manifolds and nearly Kähler geometry, Pacific J. Math. 235 (2008) 323
,Cité par Sources :