Hodge theory on nearly Kähler manifolds
Geometry & topology, Tome 15 (2011) no. 4, pp. 2111-2133.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let (M,I,ω,Ω) be a nearly Kähler 6–manifold, that is, an SU(3)–manifold with (3,0)–form Ω and Hermitian form ω which satisfies dω = 3λReΩ, dImΩ = 2λω2 for a nonzero real constant λ. We develop an analogue of the Kähler relations on M, proving several useful identities for various intrinsic Laplacians on M. When M is compact, these identities give powerful results about cohomology of  M. We show that harmonic forms on M admit a Hodge decomposition, and prove that Hp,q(M) = 0 unless p = q or (p = 1,q = 2) or (p = 2,q = 1).

DOI : 10.2140/gt.2011.15.2111
Keywords: nearly Kähler, $G_2$–manifold, Hodge decomposition, Hodge structure, Calabi–Yau manifold, almost complex structure, holonomy

Verbitsky, Misha 1

1 Laboratory of Algebraic Geometry, Faculty of Mathematics, NRU HSE, 7 Vavilova Ul, Moscow 117312, Russia
@article{GT_2011_15_4_a7,
     author = {Verbitsky, Misha},
     title = {Hodge theory on nearly {K\"ahler} manifolds},
     journal = {Geometry & topology},
     pages = {2111--2133},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2011},
     doi = {10.2140/gt.2011.15.2111},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2111/}
}
TY  - JOUR
AU  - Verbitsky, Misha
TI  - Hodge theory on nearly Kähler manifolds
JO  - Geometry & topology
PY  - 2011
SP  - 2111
EP  - 2133
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2111/
DO  - 10.2140/gt.2011.15.2111
ID  - GT_2011_15_4_a7
ER  - 
%0 Journal Article
%A Verbitsky, Misha
%T Hodge theory on nearly Kähler manifolds
%J Geometry & topology
%D 2011
%P 2111-2133
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2111/
%R 10.2140/gt.2011.15.2111
%F GT_2011_15_4_a7
Verbitsky, Misha. Hodge theory on nearly Kähler manifolds. Geometry & topology, Tome 15 (2011) no. 4, pp. 2111-2133. doi : 10.2140/gt.2011.15.2111. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2111/

[1] B S Acharya, J M Figueroa-O’Farrill, C M Hull, B Spence, Branes at conical singularities and holography, Adv. Theor. Math. Phys. 2 (1998)

[2] B S Acharya, E Witten, Chiral fermions from manifolds of $G_2$ holonomy

[3] M Atiyah, E Witten, $M$–theory dynamics on a manifold of $G_2$ holonomy, Adv. Theor. Math. Phys. 6 (2002) 1

[4] C Bär, Real Killing spinors and holonomy, Comm. Math. Phys. 154 (1993) 509

[5] H Baum, T Friedrich, R Grunewald, I Kath, Twistors and Killing spinors on Riemannian manifolds, Teubner-Texte zur Math. 124, Teubner Verlag (1991) 180

[6] J B Butruille, Classification des variétés approximativement kähleriennes homogènes, Ann. Global Anal. Geom. 27 (2005) 201

[7] R Cleyton, A Swann, Einstein metrics via intrinsic or parallel torsion, Math. Z. 247 (2004) 513

[8] J Eells, S Salamon, Twistorial construction of harmonic maps of surfaces into four-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. $(4)$ 12 (1985)

[9] T Friedrich, Nearly Kähler and nearly parallel $G_2$–structures on spheres, Arch. Math. $($Brno$)$ 42 (2006) 241

[10] T Friedrich, S Ivanov, Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math. 6 (2002) 303

[11] A Gray, Minimal varieties and almost Hermitian submanifolds, Michigan Math. J. 12 (1965) 273

[12] A Gray, Nearly Kähler manifolds, J. Differential Geometry 4 (1970) 283

[13] A Gray, Weak holonomy groups, Math. Z. 123 (1971) 290

[14] A Gray, The structure of nearly Kähler manifolds, Math. Ann. 223 (1976) 233

[15] P Griffiths, J Harris, Principles of algebraic geometry, Pure and Applied Math., Wiley-Interscience (1978)

[16] N Hitchin, Stable forms and special metrics, from: "Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000)" (editors M Fernández, J A Wolf), Contemp. Math. 288, Amer. Math. Soc. (2001) 70

[17] S Ivanov, Connections with torsion, parallel spinors and geometry of $\mathrm{{S}pin}(7)$ manifolds, Math. Res. Lett. 11 (2004) 171

[18] T Kawasaki, The signature theorem for $V$–manifolds, Topology 17 (1978) 75

[19] T Kawasaki, The Riemann–Roch theorem for complex $V$–manifolds, Osaka J. Math. 16 (1979) 151

[20] T Kawasaki, The index of elliptic operators over $V$–manifolds, Nagoya Math. J. 84 (1981) 135

[21] V F Kiričenko, $K$–spaces of maximal rank, Mat. Zametki 22 (1977) 465

[22] S Kobayashi, K Nomizu, Foundations of differential geometry, Vol. II, Interscience Tracts in Pure and Applied Math. 15, Wiley-Interscience (1969)

[23] A Moroianu, P A Nagy, U Semmelmann, Unit Killing vector fields on nearly Kähler manifolds, Internat. J. Math. 16 (2005) 281

[24] A Moroianu, P A Nagy, U Semmelmann, Deformations of nearly Kähler structures, Pacific J. Math. 235 (2008) 57

[25] O Muškarov, Structures presque hermitiennes sur des espaces twistoriels et leurs types, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987) 307

[26] P A Nagy, Nearly Kähler geometry and Riemannian foliations, Asian J. Math. 6 (2002) 481

[27] I Satake, On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A. 42 (1956) 359

[28] I Satake, The Gauss-Bonnet theorem for $V$–manifolds, J. Math. Soc. Japan 9 (1957) 464

[29] M Verbitsky, Hyper-Kähler manifolds with torsion, supersymmetry and Hodge theory, Asian J. Math. 6 (2002) 679

[30] M Verbitsky, Theorems on the vanishing of cohomology for locally conformally hyper-Kähler manifolds, Tr. Mat. Inst. Steklova 246 (2004) 64

[31] M Verbitsky, An intrinsic volume functional on almost complex $6$–manifolds and nearly Kähler geometry, Pacific J. Math. 235 (2008) 323

Cité par Sources :