Symplectic embeddings of ellipsoids in dimension greater than four
Geometry & topology, Tome 15 (2011) no. 4, pp. 2091-2110.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study symplectic embeddings of ellipsoids into balls. In the main construction, we show that a given embedding of 2m–dimensional ellipsoids can be suspended to embeddings of ellipsoids in any higher dimension. In dimension 6, if the ratio of the areas of any two axes is sufficiently large then the ellipsoid is flexible in the sense that it fully fills a ball. We also show that the same property holds in all dimensions for sufficiently thin ellipsoids E(1,,a). A consequence of our study is that in arbitrary dimension a ball can be fully filled by any sufficiently large number of identical smaller balls, thus generalizing a result of Biran valid in dimension 4.

DOI : 10.2140/gt.2011.15.2091
Classification : 53D35, 57R17
Keywords: symplectic embedding, packing stability

Buse, Olguta 1 ; Hind, Richard 2

1 Department of Mathematics, Indiana University Purdue University Indianapolis, Indianapolis IN 46202, USA
2 Department of Mathematics, University of Notre Dame, Notre Dame IN 46556, USA
@article{GT_2011_15_4_a6,
     author = {Buse, Olguta and Hind, Richard},
     title = {Symplectic embeddings of ellipsoids in dimension greater than four},
     journal = {Geometry & topology},
     pages = {2091--2110},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2011},
     doi = {10.2140/gt.2011.15.2091},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2091/}
}
TY  - JOUR
AU  - Buse, Olguta
AU  - Hind, Richard
TI  - Symplectic embeddings of ellipsoids in dimension greater than four
JO  - Geometry & topology
PY  - 2011
SP  - 2091
EP  - 2110
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2091/
DO  - 10.2140/gt.2011.15.2091
ID  - GT_2011_15_4_a6
ER  - 
%0 Journal Article
%A Buse, Olguta
%A Hind, Richard
%T Symplectic embeddings of ellipsoids in dimension greater than four
%J Geometry & topology
%D 2011
%P 2091-2110
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2091/
%R 10.2140/gt.2011.15.2091
%F GT_2011_15_4_a6
Buse, Olguta; Hind, Richard. Symplectic embeddings of ellipsoids in dimension greater than four. Geometry & topology, Tome 15 (2011) no. 4, pp. 2091-2110. doi : 10.2140/gt.2011.15.2091. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2091/

[1] P Biran, Symplectic packing in dimension $4$, Geom. Funct. Anal. 7 (1997) 420

[2] P Biran, A stability property of symplectic packing, Invent. Math. 136 (1999) 123

[3] P Biran, From symplectic packing to algebraic geometry and back, from: "European Congress of Mathematics, Vol. II (Barcelona, 2000)" (editors C Casacuberta, R M Miró-Roig, J Verdera, S Xambó-Descamps), Progr. Math. 202, Birkhäuser (2001) 507

[4] O Buse, R Hind, Optimal higher dimensional ellipsoids embeddings, in preparation

[5] K Cieliebak, H Hofer, J Latschev, F Schlenk, Quantitative symplectic geometry

[6] I Ekeland, H Hofer, Symplectic topology and Hamiltonian dynamics, Math. Z. 200 (1989) 355

[7] I Ekeland, H Hofer, Symplectic topology and Hamiltonian dynamics II, Math. Z. 203 (1990) 553

[8] A Floer, H Hofer, K Wysocki, Applications of symplectic homology I, Math. Z. 217 (1994) 577

[9] L Godinho, Blowing up symplectic orbifolds, Ann. Global Anal. Geom. 20 (2001) 117

[10] M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307

[11] M Hutchings, Quantitative embedded contact homology, to appear in J. Differential Geom.

[12] F Lalonde, D Mcduff, The classification of ruled symplectic $4$–manifolds, Math. Res. Lett. 3 (1996) 769

[13] B H Li, T J Li, Symplectic genus, minimal genus and diffeomorphisms, Asian J. Math. 6 (2002) 123

[14] B H Li, T J Li, On the diffeomorphism groups of rational and ruled $4$–manifolds, J. Math. Kyoto Univ. 46 (2006) 583

[15] T J Li, A K Liu, Uniqueness of symplectic canonical class, surface cone and symplectic cone of $4$–manifolds with $B^+=1$, J. Differential Geom. 58 (2001) 331

[16] D Mcduff, The Hofer conjecture on embedding symplectic ellipsoids, to appear in J. Differential Geom.

[17] D Mcduff, From symplectic deformation to isotopy, from: "Topics in symplectic $4$–manifolds (Irvine, CA, 1996)" (editor R J Stern), First Int. Press Lect. Ser. I, Int. Press (1998) 85

[18] D Mcduff, Some $6$–dimensional Hamiltonian $S^1$–manifolds, J. Topol. 2 (2009) 589

[19] D Mcduff, Symplectic embeddings of $4$–dimensional ellipsoids, J. Topol. 2 (2009) 1

[20] D Mcduff, L Polterovich, Symplectic packings and algebraic geometry, Invent. Math. 115 (1994) 405

[21] D Mcduff, F Schlenk, The embedding capacity of $4$–dimensional symplectic ellipsoids

[22] E Opshtein, Maximal symplectic packings in $\mathbb P^2$, Compos. Math. 143 (2007) 1558

[23] F Schlenk, Embedding problems in symplectic geometry, de Gruyter Exp. in Math. 40, de Gruyter (2005)

[24] M Symington, Symplectic rational blowdowns, J. Differential Geom. 50 (1998) 505

[25] L Traynor, Symplectic packing constructions, J. Differential Geom. 42 (1995) 411

Cité par Sources :