Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study symplectic embeddings of ellipsoids into balls. In the main construction, we show that a given embedding of –dimensional ellipsoids can be suspended to embeddings of ellipsoids in any higher dimension. In dimension , if the ratio of the areas of any two axes is sufficiently large then the ellipsoid is flexible in the sense that it fully fills a ball. We also show that the same property holds in all dimensions for sufficiently thin ellipsoids . A consequence of our study is that in arbitrary dimension a ball can be fully filled by any sufficiently large number of identical smaller balls, thus generalizing a result of Biran valid in dimension .
Buse, Olguta 1 ; Hind, Richard 2
@article{GT_2011_15_4_a6, author = {Buse, Olguta and Hind, Richard}, title = {Symplectic embeddings of ellipsoids in dimension greater than four}, journal = {Geometry & topology}, pages = {2091--2110}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2011}, doi = {10.2140/gt.2011.15.2091}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2091/} }
TY - JOUR AU - Buse, Olguta AU - Hind, Richard TI - Symplectic embeddings of ellipsoids in dimension greater than four JO - Geometry & topology PY - 2011 SP - 2091 EP - 2110 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2091/ DO - 10.2140/gt.2011.15.2091 ID - GT_2011_15_4_a6 ER -
Buse, Olguta; Hind, Richard. Symplectic embeddings of ellipsoids in dimension greater than four. Geometry & topology, Tome 15 (2011) no. 4, pp. 2091-2110. doi : 10.2140/gt.2011.15.2091. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2091/
[1] Symplectic packing in dimension $4$, Geom. Funct. Anal. 7 (1997) 420
,[2] A stability property of symplectic packing, Invent. Math. 136 (1999) 123
,[3] From symplectic packing to algebraic geometry and back, from: "European Congress of Mathematics, Vol. II (Barcelona, 2000)" (editors C Casacuberta, R M Miró-Roig, J Verdera, S Xambó-Descamps), Progr. Math. 202, Birkhäuser (2001) 507
,[4] Optimal higher dimensional ellipsoids embeddings, in preparation
, ,[5] Quantitative symplectic geometry
, , , ,[6] Symplectic topology and Hamiltonian dynamics, Math. Z. 200 (1989) 355
, ,[7] Symplectic topology and Hamiltonian dynamics II, Math. Z. 203 (1990) 553
, ,[8] Applications of symplectic homology I, Math. Z. 217 (1994) 577
, , ,[9] Blowing up symplectic orbifolds, Ann. Global Anal. Geom. 20 (2001) 117
,[10] Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307
,[11] Quantitative embedded contact homology, to appear in J. Differential Geom.
,[12] The classification of ruled symplectic $4$–manifolds, Math. Res. Lett. 3 (1996) 769
, ,[13] Symplectic genus, minimal genus and diffeomorphisms, Asian J. Math. 6 (2002) 123
, ,[14] On the diffeomorphism groups of rational and ruled $4$–manifolds, J. Math. Kyoto Univ. 46 (2006) 583
, ,[15] Uniqueness of symplectic canonical class, surface cone and symplectic cone of $4$–manifolds with $B^+=1$, J. Differential Geom. 58 (2001) 331
, ,[16] The Hofer conjecture on embedding symplectic ellipsoids, to appear in J. Differential Geom.
,[17] From symplectic deformation to isotopy, from: "Topics in symplectic $4$–manifolds (Irvine, CA, 1996)" (editor R J Stern), First Int. Press Lect. Ser. I, Int. Press (1998) 85
,[18] Some $6$–dimensional Hamiltonian $S^1$–manifolds, J. Topol. 2 (2009) 589
,[19] Symplectic embeddings of $4$–dimensional ellipsoids, J. Topol. 2 (2009) 1
,[20] Symplectic packings and algebraic geometry, Invent. Math. 115 (1994) 405
, ,[21] The embedding capacity of $4$–dimensional symplectic ellipsoids
, ,[22] Maximal symplectic packings in $\mathbb P^2$, Compos. Math. 143 (2007) 1558
,[23] Embedding problems in symplectic geometry, de Gruyter Exp. in Math. 40, de Gruyter (2005)
,[24] Symplectic rational blowdowns, J. Differential Geom. 50 (1998) 505
,[25] Symplectic packing constructions, J. Differential Geom. 42 (1995) 411
,Cité par Sources :