Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Agol recently introduced the concept of a veering taut triangulation of a –manifold, which is a taut ideal triangulation with some extra combinatorial structure. We define the weaker notion of a “veering triangulation” and use it to show that all veering triangulations admit strict angle structures. We also answer a question of Agol, giving an example of a veering taut triangulation that is not layered.
Hodgson, Craig D 1 ; Rubinstein, J Hyam 1 ; Segerman, Henry 1 ; Tillmann, Stephan 2
@article{GT_2011_15_4_a5, author = {Hodgson, Craig~D and Rubinstein, J~Hyam and Segerman, Henry and Tillmann, Stephan}, title = {Veering triangulations admit strict angle structures}, journal = {Geometry & topology}, pages = {2073--2089}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2011}, doi = {10.2140/gt.2011.15.2073}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2073/} }
TY - JOUR AU - Hodgson, Craig D AU - Rubinstein, J Hyam AU - Segerman, Henry AU - Tillmann, Stephan TI - Veering triangulations admit strict angle structures JO - Geometry & topology PY - 2011 SP - 2073 EP - 2089 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2073/ DO - 10.2140/gt.2011.15.2073 ID - GT_2011_15_4_a5 ER -
%0 Journal Article %A Hodgson, Craig D %A Rubinstein, J Hyam %A Segerman, Henry %A Tillmann, Stephan %T Veering triangulations admit strict angle structures %J Geometry & topology %D 2011 %P 2073-2089 %V 15 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2073/ %R 10.2140/gt.2011.15.2073 %F GT_2011_15_4_a5
Hodgson, Craig D; Rubinstein, J Hyam; Segerman, Henry; Tillmann, Stephan. Veering triangulations admit strict angle structures. Geometry & topology, Tome 15 (2011) no. 4, pp. 2073-2089. doi : 10.2140/gt.2011.15.2073. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2073/
[1] Ideal triangulations of pseudo-Anosov mapping tori
,[2] Trees, valuations, and the Bieri–Neumann–Strebel invariant, Invent. Math. 90 (1987) 479
,[3] Regina: Normal surface and $3$–manifold topology software (1999–2009)
,[4] Fibred and virtually fibred hyperbolic $3$–manifolds in the censuses, Experiment. Math. 14 (2005) 231
,[5] Which cusped census manifolds fiber? (2010)
,[6] On canonical triangulations of once-punctured torus bundles and two-bridge link complements, Geom. Topol. 10 (2006) 1239
,[7] An algorithm to decide if a $3$–manifold is a Haken manifold, Topology 23 (1984) 195
, ,[8] $0$–efficient triangulations of $3$–manifolds, J. Differential Geom. 65 (2003) 61
, ,[9] Ideal triangulations of 3-manifolds II; taut and angle structures, Algebr. Geom. Topol. 5 (2005) 1505
, ,[10] Taut ideal triangulations of $3$–manifolds, Geom. Topol. 4 (2000) 369
,[11] Angle structures and normal surfaces, Trans. Amer. Math. Soc. 360 (2008) 2849
, ,[12] Normal surface $Q$–theory, Pacific J. Math. 183 (1998) 359
,[13] SnapPea: A computer program for creating and studying hyperbolic $3$–manifolds
,Cité par Sources :