Veering triangulations admit strict angle structures
Geometry & topology, Tome 15 (2011) no. 4, pp. 2073-2089.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Agol recently introduced the concept of a veering taut triangulation of a 3–manifold, which is a taut ideal triangulation with some extra combinatorial structure. We define the weaker notion of a “veering triangulation” and use it to show that all veering triangulations admit strict angle structures. We also answer a question of Agol, giving an example of a veering taut triangulation that is not layered.

DOI : 10.2140/gt.2011.15.2073
Classification : 57M50
Keywords: veering triangulation, angle structure, geometric structure, hyperbolic surface bundle

Hodgson, Craig D 1 ; Rubinstein, J Hyam 1 ; Segerman, Henry 1 ; Tillmann, Stephan 2

1 Department of Mathematics and Statistics, The University of Melbourne, Melbourne Parkville VIC 3010, Australia
2 School of Mathematics and Physics, The University of Queensland, Brisbane QLD 4072, Australia
@article{GT_2011_15_4_a5,
     author = {Hodgson, Craig~D and Rubinstein, J~Hyam and Segerman, Henry and Tillmann, Stephan},
     title = {Veering triangulations admit strict angle structures},
     journal = {Geometry & topology},
     pages = {2073--2089},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2011},
     doi = {10.2140/gt.2011.15.2073},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2073/}
}
TY  - JOUR
AU  - Hodgson, Craig D
AU  - Rubinstein, J Hyam
AU  - Segerman, Henry
AU  - Tillmann, Stephan
TI  - Veering triangulations admit strict angle structures
JO  - Geometry & topology
PY  - 2011
SP  - 2073
EP  - 2089
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2073/
DO  - 10.2140/gt.2011.15.2073
ID  - GT_2011_15_4_a5
ER  - 
%0 Journal Article
%A Hodgson, Craig D
%A Rubinstein, J Hyam
%A Segerman, Henry
%A Tillmann, Stephan
%T Veering triangulations admit strict angle structures
%J Geometry & topology
%D 2011
%P 2073-2089
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2073/
%R 10.2140/gt.2011.15.2073
%F GT_2011_15_4_a5
Hodgson, Craig D; Rubinstein, J Hyam; Segerman, Henry; Tillmann, Stephan. Veering triangulations admit strict angle structures. Geometry & topology, Tome 15 (2011) no. 4, pp. 2073-2089. doi : 10.2140/gt.2011.15.2073. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.2073/

[1] I Agol, Ideal triangulations of pseudo-Anosov mapping tori

[2] K S Brown, Trees, valuations, and the Bieri–Neumann–Strebel invariant, Invent. Math. 90 (1987) 479

[3] B Burton, Regina: Normal surface and $3$–manifold topology software (1999–2009)

[4] J O Button, Fibred and virtually fibred hyperbolic $3$–manifolds in the censuses, Experiment. Math. 14 (2005) 231

[5] N Dunfield, Which cusped census manifolds fiber? (2010)

[6] F Guéritaud, On canonical triangulations of once-punctured torus bundles and two-bridge link complements, Geom. Topol. 10 (2006) 1239

[7] W Jaco, U Oertel, An algorithm to decide if a $3$–manifold is a Haken manifold, Topology 23 (1984) 195

[8] W Jaco, J H Rubinstein, $0$–efficient triangulations of $3$–manifolds, J. Differential Geom. 65 (2003) 61

[9] E Kang, J H Rubinstein, Ideal triangulations of 3-manifolds II; taut and angle structures, Algebr. Geom. Topol. 5 (2005) 1505

[10] M Lackenby, Taut ideal triangulations of $3$–manifolds, Geom. Topol. 4 (2000) 369

[11] F Luo, S Tillmann, Angle structures and normal surfaces, Trans. Amer. Math. Soc. 360 (2008) 2849

[12] J L Tollefson, Normal surface $Q$–theory, Pacific J. Math. 183 (1998) 359

[13] J R Weeks, SnapPea: A computer program for creating and studying hyperbolic $3$–manifolds

Cité par Sources :