On the moduli space of positive Ricci curvature metrics on homotopy spheres
Geometry & topology, Tome 15 (2011) no. 4, pp. 1983-2015.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that the moduli space of Ricci positive metrics on a certain family of homotopy spheres has infinitely many components.

DOI : 10.2140/gt.2011.15.1983
Classification : 53C20
Keywords: positive Ricci curvature, moduli space, homotopy sphere

Wraith, David J 1

1 Department of Mathematics and Statistics, National University of Ireland Maynooth, Maynooth, Ireland
@article{GT_2011_15_4_a3,
     author = {Wraith, David~J},
     title = {On the moduli space of positive {Ricci} curvature metrics on homotopy spheres},
     journal = {Geometry & topology},
     pages = {1983--2015},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2011},
     doi = {10.2140/gt.2011.15.1983},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1983/}
}
TY  - JOUR
AU  - Wraith, David J
TI  - On the moduli space of positive Ricci curvature metrics on homotopy spheres
JO  - Geometry & topology
PY  - 2011
SP  - 1983
EP  - 2015
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1983/
DO  - 10.2140/gt.2011.15.1983
ID  - GT_2011_15_4_a3
ER  - 
%0 Journal Article
%A Wraith, David J
%T On the moduli space of positive Ricci curvature metrics on homotopy spheres
%J Geometry & topology
%D 2011
%P 1983-2015
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1983/
%R 10.2140/gt.2011.15.1983
%F GT_2011_15_4_a3
Wraith, David J. On the moduli space of positive Ricci curvature metrics on homotopy spheres. Geometry & topology, Tome 15 (2011) no. 4, pp. 1983-2015. doi : 10.2140/gt.2011.15.1983. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1983/

[1] T Aubin, Métriques riemanniennes et courbure, J. Differential Geometry 4 (1970) 383

[2] A L Besse, Einstein manifolds, Ergebnisse der Math. und ihrer Grenzgebiete (3) 10, Springer (1987)

[3] B Botvinnik, P B Gilkey, The eta invariant and metrics of positive scalar curvature, Math. Ann. 302 (1995) 507

[4] B Botvinnik, B Hanke, T Schick, M Walsh, Homotopy groups of the moduli space of metrics of positive scalar curvature, Geom. Topol. 14 (2010) 2047

[5] C P Boyer, K Galicki, M Nakamaye, Sasakian geometry, homotopy spheres and positive Ricci curvature, Topology 42 (2003) 981

[6] W Browder, Surgery on simply-connected manifolds, Ergebnisse der Math. und ihrer Grenzgebiete 65, Springer (1972)

[7] R Carr, Construction of manifolds of positive scalar curvature, Trans. Amer. Math. Soc. 307 (1988) 63

[8] P Ehrlich, Metric deformations of curvature, I: Local convex deformations, Geometriae Dedicata 5 (1976) 1

[9] N Hitchin, Harmonic spinors, Advances in Math. 14 (1974) 1

[10] M Joachim, D J Wraith, Exotic spheres and curvature, Bull. Amer. Math. Soc. (N.S.) 45 (2008) 595

[11] V Kapovitch, A Petrunin, W Tuschmann, Non-negative pinching, moduli spaces and bundles with infinitely many souls, J. Differential Geom. 71 (2005) 365

[12] M A Kervaire, J W Milnor, Groups of homotopy spheres: I, Ann. of Math. $(2)$ 77 (1963) 504

[13] M Kreck, S Stolz, Nonconnected moduli spaces of positive sectional curvature metrics, J. Amer. Math. Soc. 6 (1993) 825

[14] H B Lawson Jr., M L Michelsohn, Spin geometry, Princeton Math. Series 38, Princeton Univ. Press (1989)

[15] A Ranicki, Algebraic and geometric surgery, Oxford Math. Monogr., Oxford Science Publ., The Clarendon Press, Oxford Univ. Press (2002)

[16] J P Sha, D Yang, Positive Ricci curvature on the connected sums of $S^n\times S^m$, J. Differential Geom. 33 (1991) 127

[17] J Vilms, Totally geodesic maps, J. Differential Geometry 4 (1970) 73

[18] D J Wraith, Exotic spheres with positive Ricci curvature, J. Differential Geom. 45 (1997) 638

[19] D J Wraith, Surgery on Ricci positive manifolds, J. Reine Angew. Math. 501 (1998) 99

[20] D J Wraith, Bundle stabilisation and positive Ricci curvature, Differential Geom. Appl. 25 (2007) 552

Cité par Sources :