Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
In this paper, we continue with the results of the preceeding paper and compute the group of quasi-isometries for a subclass of split solvable unimodular Lie groups. Consequently, we show that any finitely generated group quasi-isometric to a member of the subclass has to be polycyclic, and is virtually a lattice in an abelian-by-abelian solvable Lie group. We also give an example of a unimodular solvable Lie group that is not quasi-isometric to any finitely generated group, as well deduce some quasi-isometric rigidity results.
Peng, Irine 1
@article{GT_2011_15_4_a2, author = {Peng, Irine}, title = {Coarse differentiation and quasi-isometries of a class of solvable {Lie} groups {II}}, journal = {Geometry & topology}, pages = {1927--1981}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2011}, doi = {10.2140/gt.2011.15.1927}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1927/} }
TY - JOUR AU - Peng, Irine TI - Coarse differentiation and quasi-isometries of a class of solvable Lie groups II JO - Geometry & topology PY - 2011 SP - 1927 EP - 1981 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1927/ DO - 10.2140/gt.2011.15.1927 ID - GT_2011_15_4_a2 ER -
Peng, Irine. Coarse differentiation and quasi-isometries of a class of solvable Lie groups II. Geometry & topology, Tome 15 (2011) no. 4, pp. 1927-1981. doi : 10.2140/gt.2011.15.1927. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1927/
[1] Dimension of asymptotic cones of Lie groups, J. Topol. 1 (2008) 342
,[2] Large scale geometry of certain solvable groups, Geom. Funct. Anal. 19 (2010) 1650
,[3] Bilipschitz maps of boundaries of certain negatively curved homogeneous spaces, Geom. Dedicata 152 (2011) 129
, ,[4] Coarse differentiation of quasi-isometries I: Spaces not quasi-isometric to Cayley graphs
, , ,[5] Coarse differentiation of quasi-isometries II: Rigidity for Sol and Lamplighter groups
, , ,[6] On the asymptotic geometry of abelian-by-cyclic groups, Acta Math. 184 (2000) 145
, ,[7] Mostow–Margulis rigidity with locally compact targets, Geom. Funct. Anal. 11 (2001) 30
,[8] Quasi-isometry invariance of cohomological dimension, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993) 411
,[9] Four dimensional compact solvmanifold with and without complex analytic structures
,[10] Complex and Kähler structures on compact solvmanifolds, J. Symplectic Geom. 3 (2005) 749
,[11] Exponential radicals of solvable Lie groups, J. Algebra 248 (2002) 790
,[12] Coarse differentiation and quasi-isometries of a class of solvable Lie groups I, Geom. Topol. 15 (2011) 1883
,[13] Discrete subgroups of Lie groups, Ergebnisse der Math. und ihrer Grenzgebiete 68, Springer (1972)
,Cité par Sources :