Coarse differentiation and quasi-isometries of a class of solvable Lie groups II
Geometry & topology, Tome 15 (2011) no. 4, pp. 1927-1981.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In this paper, we continue with the results of the preceeding paper and compute the group of quasi-isometries for a subclass of split solvable unimodular Lie groups. Consequently, we show that any finitely generated group quasi-isometric to a member of the subclass has to be polycyclic, and is virtually a lattice in an abelian-by-abelian solvable Lie group. We also give an example of a unimodular solvable Lie group that is not quasi-isometric to any finitely generated group, as well deduce some quasi-isometric rigidity results.

DOI : 10.2140/gt.2011.15.1927
Keywords: quasi-isometry, solvable group, rigidity

Peng, Irine 1

1 Department of Mathematics, Indiana University, 831 E 3rd St, Bloomington IN 47401, USA
@article{GT_2011_15_4_a2,
     author = {Peng, Irine},
     title = {Coarse differentiation and quasi-isometries of a class of solvable {Lie} groups {II}},
     journal = {Geometry & topology},
     pages = {1927--1981},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2011},
     doi = {10.2140/gt.2011.15.1927},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1927/}
}
TY  - JOUR
AU  - Peng, Irine
TI  - Coarse differentiation and quasi-isometries of a class of solvable Lie groups II
JO  - Geometry & topology
PY  - 2011
SP  - 1927
EP  - 1981
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1927/
DO  - 10.2140/gt.2011.15.1927
ID  - GT_2011_15_4_a2
ER  - 
%0 Journal Article
%A Peng, Irine
%T Coarse differentiation and quasi-isometries of a class of solvable Lie groups II
%J Geometry & topology
%D 2011
%P 1927-1981
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1927/
%R 10.2140/gt.2011.15.1927
%F GT_2011_15_4_a2
Peng, Irine. Coarse differentiation and quasi-isometries of a class of solvable Lie groups II. Geometry & topology, Tome 15 (2011) no. 4, pp. 1927-1981. doi : 10.2140/gt.2011.15.1927. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1927/

[1] Y De Cornulier, Dimension of asymptotic cones of Lie groups, J. Topol. 1 (2008) 342

[2] T Dymarz, Large scale geometry of certain solvable groups, Geom. Funct. Anal. 19 (2010) 1650

[3] T Dymarz, I Peng, Bilipschitz maps of boundaries of certain negatively curved homogeneous spaces, Geom. Dedicata 152 (2011) 129

[4] A Eskin, D Fisher, K Whyte, Coarse differentiation of quasi-isometries I: Spaces not quasi-isometric to Cayley graphs

[5] A Eskin, D Fisher, K Whyte, Coarse differentiation of quasi-isometries II: Rigidity for Sol and Lamplighter groups

[6] B Farb, L Mosher, On the asymptotic geometry of abelian-by-cyclic groups, Acta Math. 184 (2000) 145

[7] A Furman, Mostow–Margulis rigidity with locally compact targets, Geom. Funct. Anal. 11 (2001) 30

[8] S M Gersten, Quasi-isometry invariance of cohomological dimension, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993) 411

[9] K Hasegawa, Four dimensional compact solvmanifold with and without complex analytic structures

[10] K Hasegawa, Complex and Kähler structures on compact solvmanifolds, J. Symplectic Geom. 3 (2005) 749

[11] D V Osin, Exponential radicals of solvable Lie groups, J. Algebra 248 (2002) 790

[12] I Peng, Coarse differentiation and quasi-isometries of a class of solvable Lie groups I, Geom. Topol. 15 (2011) 1883

[13] M S Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Math. und ihrer Grenzgebiete 68, Springer (1972)

Cité par Sources :