Totally nonsymplectic Anosov actions on tori and nilmanifolds
Geometry & topology, Tome 15 (2011) no. 1, pp. 191-216.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that totally nonsymplectic Anosov actions of higher rank abelian groups on tori and nilmanifolds with semisimple linearization are C–conjugate to actions by affine automorphisms.

DOI : 10.2140/gt.2011.15.191
Keywords: rigidity, smooth conjugacy, Anosov action, higher rank abelian group

Fisher, David 1 ; Kalinin, Boris 2 ; Spatzier, Ralf 3

1 Department of Mathematics, Indiana University, Rawles Hall, Bloomington IN 47405, USA
2 Department of Mathematics and Statistics, University of South Alabama, Mobile AL 36688, USA
3 Department of Mathematics, University of Michigan, 2074 East Hall, 530 Church Street, Ann Arbor MI 48109, USA
@article{GT_2011_15_1_a5,
     author = {Fisher, David and Kalinin, Boris and Spatzier, Ralf},
     title = {Totally nonsymplectic {Anosov} actions on tori and nilmanifolds},
     journal = {Geometry & topology},
     pages = {191--216},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2011},
     doi = {10.2140/gt.2011.15.191},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.191/}
}
TY  - JOUR
AU  - Fisher, David
AU  - Kalinin, Boris
AU  - Spatzier, Ralf
TI  - Totally nonsymplectic Anosov actions on tori and nilmanifolds
JO  - Geometry & topology
PY  - 2011
SP  - 191
EP  - 216
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.191/
DO  - 10.2140/gt.2011.15.191
ID  - GT_2011_15_1_a5
ER  - 
%0 Journal Article
%A Fisher, David
%A Kalinin, Boris
%A Spatzier, Ralf
%T Totally nonsymplectic Anosov actions on tori and nilmanifolds
%J Geometry & topology
%D 2011
%P 191-216
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.191/
%R 10.2140/gt.2011.15.191
%F GT_2011_15_1_a5
Fisher, David; Kalinin, Boris; Spatzier, Ralf. Totally nonsymplectic Anosov actions on tori and nilmanifolds. Geometry & topology, Tome 15 (2011) no. 1, pp. 191-216. doi : 10.2140/gt.2011.15.191. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.191/

[1] L Auslander, L Green, F Hahn, Flows on homogeneous spaces, Annals of Math. Studies 53, Princeton Univ. Press (1963)

[2] L Barreira, Y B Pesin, Lyapunov exponents and smooth ergodic theory, Univ. Lecture Series 23, Amer. Math. Soc. (2002)

[3] R Bowen, B Marcus, Unique ergodicity for horocycle foliations, Israel J. Math. 26 (1977) 43

[4] M Einsiedler, T Fisher, Differentiable rigidity for hyperbolic toral actions, Israel J. Math. 157 (2007) 347

[5] D Fisher, G Margulis, Local rigidity of affine actions of higher rank groups and lattices, Ann. of Math. $(2)$ 170 (2009) 67

[6] J Franks, Anosov diffeomorphisms on tori, Trans. Amer. Math. Soc. 145 (1969) 117

[7] M Guysinsky, The theory of non-stationary normal forms, Ergodic Theory Dynam. Systems 22 (2002) 845

[8] M Guysinsky, A Katok, Normal forms and invariant geometric structures for dynamical systems with invariant contracting foliations, Math. Res. Lett. 5 (1998) 149

[9] M W Hirsch, C C Pugh, M Shub, Invariant manifolds, Lecture Notes in Math. 583, Springer (1977)

[10] S Hurder, Rigidity for Anosov actions of higher rank lattices, Ann. of Math. $(2)$ 135 (1992) 361

[11] B Kalinin, A Katok, Invariant measures for actions of higher rank abelian groups, from: "Smooth ergodic theory and its applications (Seattle, WA, 1999)" (editors A Katok, R de la Llave, Y Pesin, H Weiss), Proc. Sympos. Pure Math. 69, Amer. Math. Soc. (2001) 593

[12] B Kalinin, A Katok, Measure rigidity beyond uniform hyperbolicity: invariant measures for Cartan actions on tori, J. Mod. Dyn. 1 (2007) 123

[13] B Kalinin, V Sadovskaya, Global rigidity for totally nonsymplectic Anosov $\mathbb Z^k$ actions, Geom. Topol. 10 (2006) 929

[14] B Kalinin, V Sadovskaya, On the classification of resonance-free Anosov $\mathbb Z^k$ actions, Michigan Math. J. 55 (2007) 651

[15] B Kalinin, R Spatzier, On the classification of Cartan actions, Geom. Funct. Anal. 17 (2007) 468

[16] A Katok, B Hasselblatt, Introduction to the modern theory of dynamical systems, Encyc. of Math. and its Appl. 54, Cambridge Univ. Press (1995)

[17] A Katok, J Lewis, Local rigidity for certain groups of toral automorphisms, Israel J. Math. 75 (1991) 203

[18] A Katok, R Spatzier, First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity, Inst. Hautes Études Sci. Publ. Math. (1994) 131

[19] A Katok, R Spatzier, Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions, Tr. Mat. Inst. Steklova 216 (1997) 292

[20] R De La Llave, J M Marco, R Moriyón, Canonical perturbation theory of Anosov systems and regularity results for the Livšic cohomology equation, Ann. of Math. $(2)$ 123 (1986) 537

[21] A Manning, There are no new Anosov diffeomorphisms on tori, Amer. J. Math. 96 (1974) 422

[22] G A Margulis, N Qian, Rigidity of weakly hyperbolic actions of higher real rank semisimple Lie groups and their lattices, Ergodic Theory Dynam. Systems 21 (2001) 121

[23] D Montgomery, L Zippin, Topological transformation groups, Robert E Krieger Publishing (1974)

[24] N T Qian, Anosov automorphisms for nilmanifolds and rigidity of group actions, Ergodic Theory Dynam. Systems 15 (1995) 341

[25] F Rodriguez Hertz, Global rigidity of certain abelian actions by toral automorphisms, J. Mod. Dyn. 1 (2007) 425

[26] S J Schreiber, On growth rates of subadditive functions for semiflows, J. Differential Equations 148 (1998) 334

[27] P Walters, Conjugacy properties of affine transformations of nilmanifolds, Math. Systems Theory 4 (1970) 327

Cité par Sources :