Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
This is the first of two consecutive papers that aim to understand quasi-isometries of a class of unimodular split solvable Lie groups. In the present paper, we show that locally (in a coarse sense), a quasi-isometry between two groups in this class is close to a map that respects their group structures. In the following paper we will use this result to show quasi-isometric rigidity.
Peng, Irine 1
@article{GT_2011_15_4_a1, author = {Peng, Irine}, title = {Coarse differentiation and quasi-isometries of a class of solvable {Lie} groups {I}}, journal = {Geometry & topology}, pages = {1883--1925}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2011}, doi = {10.2140/gt.2011.15.1883}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1883/} }
TY - JOUR AU - Peng, Irine TI - Coarse differentiation and quasi-isometries of a class of solvable Lie groups I JO - Geometry & topology PY - 2011 SP - 1883 EP - 1925 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1883/ DO - 10.2140/gt.2011.15.1883 ID - GT_2011_15_4_a1 ER -
Peng, Irine. Coarse differentiation and quasi-isometries of a class of solvable Lie groups I. Geometry & topology, Tome 15 (2011) no. 4, pp. 1883-1925. doi : 10.2140/gt.2011.15.1883. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1883/
[1] An exposition of the structure of solvmanifolds, I: Algebraic theory, Bull. Amer. Math. Soc. 79 (1973) 227
,[2] The optimal isoperimetric inequality for torus bundles over the circle, Quart. J. Math. Oxford Ser. $(2)$ 47 (1996) 1
, ,[3] Large scale geometry of certain solvable groups, Geom. Funct. Anal. 19 (2010) 1650
,[4] Bilipschitz maps of boundaries of certain negatively curved homogeneous spaces, Geom. Dedicata 152 (2011) 129
, ,[5] Instability of the virtual solvability and the property of being virtually torsion-free for quasi-isometric groups, Internat. Math. Res. Notices (2000) 1097
,[6] Quasi-isometries and rigidity of solvable groups, Pure Appl. Math. Q. 3 (2007) 927
, , ,[7] Coarse differentiation of quasi-isometries I: Spaces not quasi-isometric to Cayley graphs
, , ,[8] Coarse differentiation of quasi-isometries II: Rigidity for Sol and Lamplighter groups
, , ,[9] Sur la loi des grands nombres et le rayon spectral d'une marche aléatoire, from: "Conference on Random Walks (Kleebach, 1979)", Astérisque 74, Soc. Math. France (1980) 47, 3
,[10] Exponential radicals of solvable Lie groups, J. Algebra 248 (2002) 790
,[11] Coarse differentiation and quasi-isometries of a class of solvable Lie groups II, Geom. Topol. 15 (2011) 1927
,Cité par Sources :