Coarse differentiation and quasi-isometries of a class of solvable Lie groups I
Geometry & topology, Tome 15 (2011) no. 4, pp. 1883-1925.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This is the first of two consecutive papers that aim to understand quasi-isometries of a class of unimodular split solvable Lie groups. In the present paper, we show that locally (in a coarse sense), a quasi-isometry between two groups in this class is close to a map that respects their group structures. In the following paper we will use this result to show quasi-isometric rigidity.

DOI : 10.2140/gt.2011.15.1883
Keywords: quasi-isometry, solvable group, rigidity

Peng, Irine 1

1 Department of Mathematics, Indiana University, 831 E 3rd St, Bloomington IN 47401, USA
@article{GT_2011_15_4_a1,
     author = {Peng, Irine},
     title = {Coarse differentiation and quasi-isometries of a class of solvable {Lie} groups {I}},
     journal = {Geometry & topology},
     pages = {1883--1925},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2011},
     doi = {10.2140/gt.2011.15.1883},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1883/}
}
TY  - JOUR
AU  - Peng, Irine
TI  - Coarse differentiation and quasi-isometries of a class of solvable Lie groups I
JO  - Geometry & topology
PY  - 2011
SP  - 1883
EP  - 1925
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1883/
DO  - 10.2140/gt.2011.15.1883
ID  - GT_2011_15_4_a1
ER  - 
%0 Journal Article
%A Peng, Irine
%T Coarse differentiation and quasi-isometries of a class of solvable Lie groups I
%J Geometry & topology
%D 2011
%P 1883-1925
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1883/
%R 10.2140/gt.2011.15.1883
%F GT_2011_15_4_a1
Peng, Irine. Coarse differentiation and quasi-isometries of a class of solvable Lie groups I. Geometry & topology, Tome 15 (2011) no. 4, pp. 1883-1925. doi : 10.2140/gt.2011.15.1883. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1883/

[1] L Auslander, An exposition of the structure of solvmanifolds, I: Algebraic theory, Bull. Amer. Math. Soc. 79 (1973) 227

[2] M R Bridson, S M Gersten, The optimal isoperimetric inequality for torus bundles over the circle, Quart. J. Math. Oxford Ser. $(2)$ 47 (1996) 1

[3] T Dymarz, Large scale geometry of certain solvable groups, Geom. Funct. Anal. 19 (2010) 1650

[4] T Dymarz, I Peng, Bilipschitz maps of boundaries of certain negatively curved homogeneous spaces, Geom. Dedicata 152 (2011) 129

[5] A Dyubina, Instability of the virtual solvability and the property of being virtually torsion-free for quasi-isometric groups, Internat. Math. Res. Notices (2000) 1097

[6] A Eskin, D Fisher, K Whyte, Quasi-isometries and rigidity of solvable groups, Pure Appl. Math. Q. 3 (2007) 927

[7] A Eskin, D Fisher, K Whyte, Coarse differentiation of quasi-isometries I: Spaces not quasi-isometric to Cayley graphs

[8] A Eskin, D Fisher, K Whyte, Coarse differentiation of quasi-isometries II: Rigidity for Sol and Lamplighter groups

[9] Y Guivarc’H, Sur la loi des grands nombres et le rayon spectral d'une marche aléatoire, from: "Conference on Random Walks (Kleebach, 1979)", Astérisque 74, Soc. Math. France (1980) 47, 3

[10] D V Osin, Exponential radicals of solvable Lie groups, J. Algebra 248 (2002) 790

[11] I Peng, Coarse differentiation and quasi-isometries of a class of solvable Lie groups II, Geom. Topol. 15 (2011) 1927

Cité par Sources :