Sutures and contact homology I
Geometry & topology, Tome 15 (2011) no. 3, pp. 1749-1842.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We define a relative version of contact homology for contact manifolds with convex boundary and prove basic properties of this relative contact homology. Similar considerations also hold for embedded contact homology.

DOI : 10.2140/gt.2011.15.1749
Keywords: contact structure, sutured manifold, contact homology, Reeb dynamics, embedded contact homology

Colin, Vincent 1 ; Ghiggini, Paolo 2 ; Honda, Ko 3 ; Hutchings, Michael 4

1 Laboratoire de Mathématiques Jean Leray, UMR6629 du CNRS, Université de Nantes, 2 rue de la Houssinière, F-44322 Nantes, France
2 Laboratoire de Mathématiques Jean Leray, UMR 6629 du CNRS, Université de Nantes, 2 rue de la Houssinière, F-44322 Nantes, France
3 Department of Mathematics, University of Southern California, 3620 S Vermont Ave, Los Angeles CA 90089, USA
4 Mathematics Department, University of California, Berkeley, 970 Evans Hall, Berkeley CA 94720, USA
@article{GT_2011_15_3_a11,
     author = {Colin, Vincent and Ghiggini, Paolo and Honda, Ko and Hutchings, Michael},
     title = {Sutures and contact homology {I}},
     journal = {Geometry & topology},
     pages = {1749--1842},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2011},
     doi = {10.2140/gt.2011.15.1749},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1749/}
}
TY  - JOUR
AU  - Colin, Vincent
AU  - Ghiggini, Paolo
AU  - Honda, Ko
AU  - Hutchings, Michael
TI  - Sutures and contact homology I
JO  - Geometry & topology
PY  - 2011
SP  - 1749
EP  - 1842
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1749/
DO  - 10.2140/gt.2011.15.1749
ID  - GT_2011_15_3_a11
ER  - 
%0 Journal Article
%A Colin, Vincent
%A Ghiggini, Paolo
%A Honda, Ko
%A Hutchings, Michael
%T Sutures and contact homology I
%J Geometry & topology
%D 2011
%P 1749-1842
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1749/
%R 10.2140/gt.2011.15.1749
%F GT_2011_15_3_a11
Colin, Vincent; Ghiggini, Paolo; Honda, Ko; Hutchings, Michael. Sutures and contact homology I. Geometry & topology, Tome 15 (2011) no. 3, pp. 1749-1842. doi : 10.2140/gt.2011.15.1749. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1749/

[1] F Bourgeois, V Colin, Homologie de contact des variétés toroïdales, Geom. Topol. 9 (2005) 299

[2] F Bourgeois, T Ekholm, Y Eliashberg, Effect of Legendrian surgery

[3] F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799

[4] F Bourgeois, K Mohnke, Coherent orientations in symplectic field theory, Math. Z. 248 (2004) 123

[5] Y Chekanov, Differential algebra of Legendrian links, Invent. Math. 150 (2002) 441

[6] K Cieliebak, K Mohnke, Compactness for punctured holomorphic curves, J. Symplectic Geom. 3 (2005) 589

[7] V Colin, P Ghiggini, K Honda, M Hutchings, Sutures and contact homology II, in preparation

[8] V Colin, K Honda, Constructions contrôlées de champs de Reeb et applications, Geom. Topol. 9 (2005) 2193

[9] D L Dragnev, Fredholm theory and transversality for noncompact pseudoholomorphic maps in symplectizations, Comm. Pure Appl. Math. 57 (2004) 726

[10] T Ekholm, J Etnyre, M Sullivan, The contact homology of Legendrian submanifolds in $\mathbb{R}^{2n+1}$, J. Differential Geom. 71 (2005) 177

[11] Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, from: "GAFA 2000 (Tel Aviv, 1999)", Geom. Funct. Anal. Special Volume, Part II (2000) 560

[12] Y Eliashberg, M Gromov, Convex symplectic manifolds, from: "Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989)" (editors E Bedford, J P D’Angelo, R E Greene, S G Krantz), Proc. Sympos. Pure Math. 52, Amer. Math. Soc. (1991) 135

[13] O Fabert, Obstruction bundles over moduli spaces with boundary and the action filtration in symplectic field theory

[14] D Gabai, Foliations and the topology of $3$–manifolds, J. Differential Geom. 18 (1983) 445

[15] E Giroux, Convexité en topologie de contact, Comment. Math. Helv. 66 (1991) 637

[16] E Giroux, Géométrie de contact: de la dimension trois vers les dimensions supérieures, from: "Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002)" (editor T Li), Higher Ed. Press (2002) 405

[17] R Golovko, The embedded contact homology of sutured solid tori II, in preparation

[18] R Golovko, The embedded contact homology of sutured solid tori, Algebr. Geom. Topol. 11 (2011) 1001

[19] H Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993) 515

[20] H Hofer, A general Fredholm theory and applications, from: "Current developments in mathematics, 2004" (editors D Jerison, B Mazur, T Mrowka, W Schmid, R Stanley, S T Yau), Int. Press (2006) 1

[21] K Honda, W H Kazez, G Matić, Convex decomposition theory, Int. Math. Res. Not. (2002) 55

[22] K Honda, W H Kazez, G Matić, Right-veering diffeomorphisms of compact surfaces with boundary II, Geom. Topol. 12 (2008) 2057

[23] C Hummel, Gromov's compactness theorem for pseudo-holomorphic curves, Progress in Math. 151, Birkhäuser Verlag (1997)

[24] M Hutchings, An index inequality for embedded pseudoholomorphic curves in symplectizations, J. Eur. Math. Soc. 4 (2002) 313

[25] M Hutchings, The embedded contact homology index revisited, from: "New perspectives and challenges in symplectic field theory" (editors M Abreu, F Lalonde, L Polterovich), CRM Proc. Lecture Notes 49, Amer. Math. Soc. (2009) 263

[26] M Hutchings, M Sullivan, Rounding corners of polygons and the embedded contact homology of $T^3$, Geom. Topol. 10 (2006) 169

[27] M Hutchings, C H Taubes, Proof of the Arnold chord conjecture in three dimensions II, in preparation

[28] M Hutchings, C H Taubes, Gluing pseudoholomorphic curves along branched covered cylinders I, J. Symplectic Geom. 5 (2007) 43

[29] M Hutchings, C H Taubes, Gluing pseudoholomorphic curves along branched covered cylinders II, J. Symplectic Geom. 7 (2009) 29

[30] A Juhász, Holomorphic discs and sutured manifolds, Algebr. Geom. Topol. 6 (2006) 1429

[31] A Juhász, Floer homology and surface decompositions, Geom. Topol. 12 (2008) 299

[32] P Kronheimer, T Mrowka, Monopoles and three-manifolds, New Math. Monogr. 10, Cambridge Univ. Press (2007)

[33] P Kronheimer, T Mrowka, Knots, sutures, and excision, J. Differential Geom. 84 (2010) 301

[34] A Cannas Da Silva, V Guillemin, C Woodward, On the unfolding of folded symplectic structures, Math. Res. Lett. 7 (2000) 35

[35] C H Taubes, The structure of pseudo-holomorphic subvarieties for a degenerate almost complex structure and symplectic form on $S^1\times B^3$, Geom. Topol. 2 (1998) 221

[36] C H Taubes, The Seiberg–Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007) 2117

[37] C H Taubes, Embedded contact homology and Seiberg-Witten Floer cohomology I–IV, Geom. Topol. 14 (2010) 2497

[38] I Ustilovsky, Infinitely many contact structures on $S^{4m+1}$, Internat. Math. Res. Notices (1999) 781

Cité par Sources :