Parallelogram decompositions and generic surfaces in Hhyp(4)
Geometry & topology, Tome 15 (2011) no. 3, pp. 1707-1747.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The space hyp(4) is the moduli space of pairs (M,ω), where M is a hyperelliptic Riemann surface of genus 3 and ω is a holomorphic 1–form having only one zero. In this paper, we first show that every surface in hyp(4) admits a decomposition into parallelograms and simple cylinders following a unique model. We then show that if this decomposition satisfies some irrational condition, then the GL+(2, )–orbit of the surface is dense in hyp(4); such surfaces are called generic. Using this criterion, we prove that there are generic surfaces in hyp(4) with coordinates in any quadratic field, and there are Thurston–Veech surfaces with trace field of degree three over which are generic.

DOI : 10.2140/gt.2011.15.1707
Classification : 51H25, 37B05
Keywords: translation surface, unipotent flow, dynamics on moduli space

Nguyen, Duc-Manh 1

1 Institut de Mathématiques de Bordeaux, Bat A33, Université Bordeaux 1, 351, cours de la Libération, F-33405 Talence Cedex, France
@article{GT_2011_15_3_a10,
     author = {Nguyen, Duc-Manh},
     title = {Parallelogram decompositions and generic surfaces in {Hhyp(4)}},
     journal = {Geometry & topology},
     pages = {1707--1747},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2011},
     doi = {10.2140/gt.2011.15.1707},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1707/}
}
TY  - JOUR
AU  - Nguyen, Duc-Manh
TI  - Parallelogram decompositions and generic surfaces in Hhyp(4)
JO  - Geometry & topology
PY  - 2011
SP  - 1707
EP  - 1747
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1707/
DO  - 10.2140/gt.2011.15.1707
ID  - GT_2011_15_3_a10
ER  - 
%0 Journal Article
%A Nguyen, Duc-Manh
%T Parallelogram decompositions and generic surfaces in Hhyp(4)
%J Geometry & topology
%D 2011
%P 1707-1747
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1707/
%R 10.2140/gt.2011.15.1707
%F GT_2011_15_3_a10
Nguyen, Duc-Manh. Parallelogram decompositions and generic surfaces in Hhyp(4). Geometry & topology, Tome 15 (2011) no. 3, pp. 1707-1747. doi : 10.2140/gt.2011.15.1707. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1707/

[1] K Calta, Veech surfaces and complete periodicity in genus two, J. Amer. Math. Soc. 17 (2004) 871

[2] K Calta, J Smillie, Algebraically periodic translation surfaces, J. Mod. Dyn. 2 (2008) 209

[3] A Douady, J Hubbard, On the density of Strebel differentials, Invent. Math. 30 (1975) 175

[4] A Eskin, A Okounkov, Asymptotics of numbers of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials, Invent. Math. 145 (2001) 59

[5] P Hubert, E Lanneau, M Möller, Completely periodic directions and orbit closures of many pseudo-Anosov Teichm\”ller discs in $Q(1,1,1,1)$, to appear in Math. Ann.

[6] P Hubert, E Lanneau, M Möller, The Arnoux–Yoccoz Teichmüller disc, Geom. Funct. Anal. 18 (2009) 1988

[7] P Hubert, E Lanneau, M Möller, $\mathrm{GL}_2^+(\R)$–orbit closures via topological splittings, from: "Surveys in differential geometry, Vol. XIV: Geometry of Riemann surfaces and their moduli spaces" (editors L Ji, S A Wolpert, S T Yau), Surv. Differ. Geom. 14, Int. Press (2009) 145

[8] P Hubert, T A Schmidt, An introduction to Veech surfaces, from: "Handbook of dynamical systems. Vol. 1B" (editors B Hasselblatt, A Katok), Elsevier (2006) 501

[9] M Kontsevich, A Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math. 153 (2003) 631

[10] H Masur, Interval exchange transformations and measured foliations, Ann. of Math. $(2)$ 115 (1982) 169

[11] H Masur, S Tabachnikov, Rational billiards and flat structures, from: "Handbook of dynamical systems, Vol. 1A" (editors B Hasselblatt, A Katok), North-Holland (2002) 1015

[12] C T Mcmullen, Dynamics of $\mathrm{SL}_2(\mathbb R)$ over moduli space in genus two, Ann. of Math. $(2)$ 165 (2007) 397

[13] W P Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. $($N.S.$)$ 19 (1988) 417

[14] W A Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math. 97 (1989) 553

[15] W A Veech, Moduli spaces of quadratic differentials, J. Analyse Math. 55 (1990) 117

[16] A Zorich, Flat surfaces, from: "Frontiers in number theory, physics, and geometry I" (editors P Cartier, B Julia, P Moussa, P Vanhove), Springer (2006) 437

Cité par Sources :