Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that the Hamiltonian Lagrangian monodromy group, in its homological version, is trivial for any weakly exact Lagrangian submanifold of a symplectic manifold. The proof relies on a sheaf approach to Floer homology given by a relative Seidel morphism.
Hu, Shengda 1 ; Lalonde, François 2 ; Leclercq, Rémi 2
@article{GT_2011_15_3_a8, author = {Hu, Shengda and Lalonde, Fran\c{c}ois and Leclercq, R\'emi}, title = {Homological {Lagrangian} monodromy}, journal = {Geometry & topology}, pages = {1617--1650}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2011}, doi = {10.2140/gt.2011.15.1617}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1617/} }
TY - JOUR AU - Hu, Shengda AU - Lalonde, François AU - Leclercq, Rémi TI - Homological Lagrangian monodromy JO - Geometry & topology PY - 2011 SP - 1617 EP - 1650 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1617/ DO - 10.2140/gt.2011.15.1617 ID - GT_2011_15_3_a8 ER -
Hu, Shengda; Lalonde, François; Leclercq, Rémi. Homological Lagrangian monodromy. Geometry & topology, Tome 15 (2011) no. 3, pp. 1617-1650. doi : 10.2140/gt.2011.15.1617. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1617/
[1] Loops of Lagrangian submanifolds and pseudoholomorphic discs, Geom. Funct. Anal. 11 (2001) 609
, ,[2] Hamiltonian diffeomorphisms and Lagrangian distributions, Geom. Funct. Anal. 2 (1992) 173
, ,[3] Lagrangian topology and enumerative geometry
, ,[4] Quantum structures for Lagrangian submanifolds
, ,[5] Cluster homology
, ,[6] Lagrangian intersection Floer theory: anomaly and obstructions, preprint (2007)
, , ,[7] Exact Lagrangian submanifolds in simply-connected cotangent bundles, Invent. Math. 172 (2008) 1
, , ,[8] A relative Seidel morphism and the Albers map, Trans. Amer. Math. Soc. 362 (2010) 1135
, ,[9] Topological rigidity of Hamiltonian loops and quantum homology, Invent. Math. 135 (1999) 369
, , ,[10] Spectral invariants in Lagrangian Floer theory, J. Mod. Dyn. 2 (2008) 249
,[11] Relative Floer and quantum cohomology and the symplectic topology of Lagrangian submanifolds, from: "Contact and symplectic geometry (Cambridge, 1994)", Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 201
,[12] $\pi_1$ of symplectic automorphism groups and invertibles in quantum homology rings, Geom. Funct. Anal. 7 (1997) 1046
,[13] Monodromy and isotopy of monotone Lagrangian tori, Math. Res. Lett. 16 (2009) 531
,Cité par Sources :