Homological Lagrangian monodromy
Geometry & topology, Tome 15 (2011) no. 3, pp. 1617-1650.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that the Hamiltonian Lagrangian monodromy group, in its homological version, is trivial for any weakly exact Lagrangian submanifold of a symplectic manifold. The proof relies on a sheaf approach to Floer homology given by a relative Seidel morphism.

DOI : 10.2140/gt.2011.15.1617
Classification : 53D12, 53D40, 53C15, 53D45, 57R58, 57S05, 58B20
Keywords: Lagrangian monodromy, Hamiltonian isotopy, Hamiltonian fibration, Floer homology, relative Seidel morphism

Hu, Shengda 1 ; Lalonde, François 2 ; Leclercq, Rémi 2

1 Department of Mathematics, Wilfrid Laurier University, 75 University Ave. West, Waterloo, Ontario N2L 3C5, Canada
2 Département de mathématiques et de Statistique, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, Québec H3C 3J7, Canada
@article{GT_2011_15_3_a8,
     author = {Hu, Shengda and Lalonde, Fran\c{c}ois and Leclercq, R\'emi},
     title = {Homological {Lagrangian} monodromy},
     journal = {Geometry & topology},
     pages = {1617--1650},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2011},
     doi = {10.2140/gt.2011.15.1617},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1617/}
}
TY  - JOUR
AU  - Hu, Shengda
AU  - Lalonde, François
AU  - Leclercq, Rémi
TI  - Homological Lagrangian monodromy
JO  - Geometry & topology
PY  - 2011
SP  - 1617
EP  - 1650
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1617/
DO  - 10.2140/gt.2011.15.1617
ID  - GT_2011_15_3_a8
ER  - 
%0 Journal Article
%A Hu, Shengda
%A Lalonde, François
%A Leclercq, Rémi
%T Homological Lagrangian monodromy
%J Geometry & topology
%D 2011
%P 1617-1650
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1617/
%R 10.2140/gt.2011.15.1617
%F GT_2011_15_3_a8
Hu, Shengda; Lalonde, François; Leclercq, Rémi. Homological Lagrangian monodromy. Geometry & topology, Tome 15 (2011) no. 3, pp. 1617-1650. doi : 10.2140/gt.2011.15.1617. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1617/

[1] M Akveld, D Salamon, Loops of Lagrangian submanifolds and pseudoholomorphic discs, Geom. Funct. Anal. 11 (2001) 609

[2] M Bialy, L Polterovich, Hamiltonian diffeomorphisms and Lagrangian distributions, Geom. Funct. Anal. 2 (1992) 173

[3] P Biran, O Cornea, Lagrangian topology and enumerative geometry

[4] P Biran, O Cornea, Quantum structures for Lagrangian submanifolds

[5] O Cornea, F Lalonde, Cluster homology

[6] K Fukaya, Y G Oh, K Ono, Lagrangian intersection Floer theory: anomaly and obstructions, preprint (2007)

[7] K Fukaya, P Seidel, I Smith, Exact Lagrangian submanifolds in simply-connected cotangent bundles, Invent. Math. 172 (2008) 1

[8] S Hu, F Lalonde, A relative Seidel morphism and the Albers map, Trans. Amer. Math. Soc. 362 (2010) 1135

[9] F Lalonde, D Mcduff, L Polterovich, Topological rigidity of Hamiltonian loops and quantum homology, Invent. Math. 135 (1999) 369

[10] R Leclercq, Spectral invariants in Lagrangian Floer theory, J. Mod. Dyn. 2 (2008) 249

[11] Y G Oh, Relative Floer and quantum cohomology and the symplectic topology of Lagrangian submanifolds, from: "Contact and symplectic geometry (Cambridge, 1994)", Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 201

[12] P Seidel, $\pi_1$ of symplectic automorphism groups and invertibles in quantum homology rings, Geom. Funct. Anal. 7 (1997) 1046

[13] M L Yau, Monodromy and isotopy of monotone Lagrangian tori, Math. Res. Lett. 16 (2009) 531

Cité par Sources :