Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We relate two different quantizations of the character variety consisting of all representations of surface groups in . One is the Kauffman skein algebra considered by Bullock, Frohman and Kania-Bartoszyńska, Przytycki and Sikora, and Turaev. The other is the quantum Teichmüller space introduced by Chekhov and Fock and by Kashaev. We construct a homomorphism from the skein algebra to the quantum Teichmüller space which, when restricted to the classical case, corresponds to the equivalence between these two algebras through trace functions.
Bonahon, Francis 1 ; Wong, Helen 2
@article{GT_2011_15_3_a7, author = {Bonahon, Francis and Wong, Helen}, title = {Quantum traces for representations of surface groups in {SL2(\ensuremath{\mathbb{C}})}}, journal = {Geometry & topology}, pages = {1569--1615}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2011}, doi = {10.2140/gt.2011.15.1569}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1569/} }
TY - JOUR AU - Bonahon, Francis AU - Wong, Helen TI - Quantum traces for representations of surface groups in SL2(ℂ) JO - Geometry & topology PY - 2011 SP - 1569 EP - 1615 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1569/ DO - 10.2140/gt.2011.15.1569 ID - GT_2011_15_3_a7 ER -
Bonahon, Francis; Wong, Helen. Quantum traces for representations of surface groups in SL2(ℂ). Geometry & topology, Tome 15 (2011) no. 3, pp. 1569-1615. doi : 10.2140/gt.2011.15.1569. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1569/
[1] A uniqueness property for the quantization of Teichmüller spaces, Geom. Dedicata 128 (2007) 1
,[2] Local representations of the quantum Teichmüller space
, , ,[3] Skein spaces and spin structures, Math. Proc. Cambridge Philos. Soc. 126 (1999) 267
,[4] Low-dimensional geometry: From Euclidean surfaces to hyperbolic knots, Student Math. Library, IAS/Park City Mathematical Subseries 49, Amer. Math. Soc. (2009)
,[5] Representations of the quantum Teichmüller space and invariants of surface diffeomorphisms, Geom. Topol. 11 (2007) 889
, ,[6] Kauffman brackets, character varieties and triangulations of surfaces, from: "Proceedings of the Conference on Topology and Geometry in Dimension Three: Triangulations, Invariants, and Geometric structures held in honor of Wiliam Jaco's 70th birthday on June 4–6, 2010 at Oklahoma State University in Stillwater, OK" (editors L Bartolini, D Gabai, J Johnson, W Li, F Luo, R Myers, H Rubinstein), to appear in Contemporary Math., Amer. Math. Soc.
, ,[7] Representations of the Kauffman skein algebra I: Punctured surfaces, in preparation
, ,[8] Representations of the Kauffman skein algebra II: Closed surfaces and naturality, in preparation
, ,[9] Estimating a skein module with $\mathrm{SL}_2({\C})$ characters, Proc. Amer. Math. Soc. 125 (1997) 1835
,[10] Rings of $\mathrm{SL}_2({\C})$–characters and the Kauffman bracket skein module, Comment. Math. Helv. 72 (1997) 521
,[11] Topological interpretations of lattice gauge field theory, Comm. Math. Phys. 198 (1998) 47
, , ,[12] Understanding the Kauffman bracket skein module, J. Knot Theory Ramifications 8 (1999) 265
, , ,[13] The Kauffman bracket skein as an algebra of observables, Proc. Amer. Math. Soc. 130 (2002) 2479
, , ,[14] Quantum Teichmüller spaces, Teoret. Mat. Fiz. 120 (1999) 511
, ,[15] Observables in 3D gravity and geodesic algebras, from: "Quantum groups and integrable systems (Prague, 2000)" (editor Č Burdík), Czechoslovak J. Phys. 50, Academy of Sci. of the Czech Republic Inst. of Physics (2000) 1201
, ,[16] Introduction to Thurston's quantum theory, Uspekhi Mat. Nauk 58 (2003) 93
, ,[17] Skew fields: Theory of general division rings, Encyclopedia of Math. and its Appl. 57, Cambridge Univ. Press (1995)
,[18] Dual Teichmüller spaces
,[19] The symplectic nature of fundamental groups of surfaces, Adv. in Math. 54 (1984) 200
,[20] Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math. 85 (1986) 263
,[21] Quantum Teichmüller space and Kashaev algebra, Algebr. Geom. Topol. 9 (2009) 1791
, ,[22] The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986) 157
,[23] Diskrete Untergruppen von $\mathrm{SL}_{2}({\R})$, Invent. Math. 17 (1972) 217
,[24] Quantum traces in quantum Teichmüller theory, Algebr. Geom. Topol. 10 (2010) 1245
,[25] Quantization of Teichmüller spaces and the quantum dilogarithm, Lett. Math. Phys. 43 (1998) 105
,[26] Quantum groups, Graduate Texts in Math. 155, Springer (1995)
,[27] An introduction to knot theory, Graduate Texts in Math. 175, Springer (1997)
,[28] The quantum Teichmüller space as a noncommutative algebraic object, J. Knot Theory Ramifications 18 (2009) 705
,[29] Geometric invariant theory, Ergebnisse der Math. und ihrer Grenzgebiete (2) 34, Springer (1994)
, , ,[30] The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys. 113 (1987) 299
,[31] Über eine Metrisierung der automorphen Formen und die Theorie der Poincaréschen Reihen, Math. Ann. 117 (1940) 453
,[32] On skein algebras and $\mathrm{SL}_2({\C})$–character varieties, Topology 39 (2000) 115
, ,[33] Minimal stretch maps between hyperbolic surfaces
,[34] Three-dimensional geometry and topology. Vol. 1, (S Levy, editor), Princeton Math. Series 35, Princeton Univ. Press (1997)
,[35] Skein quantization of Poisson algebras of loops on surfaces, Ann. Sci. École Norm. Sup. $(4)$ 24 (1991) 635
,[36] Modules des surfaces de Riemann, from: "Scientific works, Collected papers, Vol. II (1951–1964)", Springer (1979) 381
,Cité par Sources :