Quantum traces for representations of surface groups in SL2(ℂ)
Geometry & topology, Tome 15 (2011) no. 3, pp. 1569-1615.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We relate two different quantizations of the character variety consisting of all representations of surface groups in SL2. One is the Kauffman skein algebra considered by Bullock, Frohman and Kania-Bartoszyńska, Przytycki and Sikora, and Turaev. The other is the quantum Teichmüller space introduced by Chekhov and Fock and by Kashaev. We construct a homomorphism from the skein algebra to the quantum Teichmüller space which, when restricted to the classical case, corresponds to the equivalence between these two algebras through trace functions.

DOI : 10.2140/gt.2011.15.1569
Classification : 14D20, 57M25, 57R56
Keywords: Kauffman skein relation, character variety, surface group, skein module, skein algebra, quantum Teichmüller theory

Bonahon, Francis 1 ; Wong, Helen 2

1 Department of Mathematics, University of Southern California, 3620 S Vermont Ave, KAP 108, Los Angeles CA 90089-2532, USA
2 Department of Mathematics, Carleton College, 1 North College St, Northfield MN 55057, USA
@article{GT_2011_15_3_a7,
     author = {Bonahon, Francis and Wong, Helen},
     title = {Quantum traces for representations of surface groups in {SL2(\ensuremath{\mathbb{C}})}},
     journal = {Geometry & topology},
     pages = {1569--1615},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2011},
     doi = {10.2140/gt.2011.15.1569},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1569/}
}
TY  - JOUR
AU  - Bonahon, Francis
AU  - Wong, Helen
TI  - Quantum traces for representations of surface groups in SL2(ℂ)
JO  - Geometry & topology
PY  - 2011
SP  - 1569
EP  - 1615
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1569/
DO  - 10.2140/gt.2011.15.1569
ID  - GT_2011_15_3_a7
ER  - 
%0 Journal Article
%A Bonahon, Francis
%A Wong, Helen
%T Quantum traces for representations of surface groups in SL2(ℂ)
%J Geometry & topology
%D 2011
%P 1569-1615
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1569/
%R 10.2140/gt.2011.15.1569
%F GT_2011_15_3_a7
Bonahon, Francis; Wong, Helen. Quantum traces for representations of surface groups in SL2(ℂ). Geometry & topology, Tome 15 (2011) no. 3, pp. 1569-1615. doi : 10.2140/gt.2011.15.1569. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1569/

[1] H Bai, A uniqueness property for the quantization of Teichmüller spaces, Geom. Dedicata 128 (2007) 1

[2] H Bai, F Bonahon, X Liu, Local representations of the quantum Teichmüller space

[3] J W Barrett, Skein spaces and spin structures, Math. Proc. Cambridge Philos. Soc. 126 (1999) 267

[4] F Bonahon, Low-dimensional geometry: From Euclidean surfaces to hyperbolic knots, Student Math. Library, IAS/Park City Mathematical Subseries 49, Amer. Math. Soc. (2009)

[5] F Bonahon, X Liu, Representations of the quantum Teichmüller space and invariants of surface diffeomorphisms, Geom. Topol. 11 (2007) 889

[6] F Bonahon, H Wong, Kauffman brackets, character varieties and triangulations of surfaces, from: "Proceedings of the Conference on Topology and Geometry in Dimension Three: Triangulations, Invariants, and Geometric structures held in honor of Wiliam Jaco's 70th birthday on June 4–6, 2010 at Oklahoma State University in Stillwater, OK" (editors L Bartolini, D Gabai, J Johnson, W Li, F Luo, R Myers, H Rubinstein), to appear in Contemporary Math., Amer. Math. Soc.

[7] F Bonahon, H Wong, Representations of the Kauffman skein algebra I: Punctured surfaces, in preparation

[8] F Bonahon, H Wong, Representations of the Kauffman skein algebra II: Closed surfaces and naturality, in preparation

[9] D Bullock, Estimating a skein module with $\mathrm{SL}_2({\C})$ characters, Proc. Amer. Math. Soc. 125 (1997) 1835

[10] D Bullock, Rings of $\mathrm{SL}_2({\C})$–characters and the Kauffman bracket skein module, Comment. Math. Helv. 72 (1997) 521

[11] D Bullock, C Frohman, J Kania-Bartoszyńska, Topological interpretations of lattice gauge field theory, Comm. Math. Phys. 198 (1998) 47

[12] D Bullock, C Frohman, J Kania-Bartoszyńska, Understanding the Kauffman bracket skein module, J. Knot Theory Ramifications 8 (1999) 265

[13] D Bullock, C Frohman, J Kania-Bartoszyńska, The Kauffman bracket skein as an algebra of observables, Proc. Amer. Math. Soc. 130 (2002) 2479

[14] L O Chekhov, V V Fock, Quantum Teichmüller spaces, Teoret. Mat. Fiz. 120 (1999) 511

[15] L O Chekhov, V V Fock, Observables in 3D gravity and geodesic algebras, from: "Quantum groups and integrable systems (Prague, 2000)" (editor Č Burdík), Czechoslovak J. Phys. 50, Academy of Sci. of the Czech Republic Inst. of Physics (2000) 1201

[16] L O Chekhov, R C Penner, Introduction to Thurston's quantum theory, Uspekhi Mat. Nauk 58 (2003) 93

[17] P M Cohn, Skew fields: Theory of general division rings, Encyclopedia of Math. and its Appl. 57, Cambridge Univ. Press (1995)

[18] V V Fock, Dual Teichmüller spaces

[19] W M Goldman, The symplectic nature of fundamental groups of surfaces, Adv. in Math. 54 (1984) 200

[20] W M Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math. 85 (1986) 263

[21] R Guo, X Liu, Quantum Teichmüller space and Kashaev algebra, Algebr. Geom. Topol. 9 (2009) 1791

[22] J L Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986) 157

[23] H Helling, Diskrete Untergruppen von $\mathrm{SL}_{2}({\R})$, Invent. Math. 17 (1972) 217

[24] C Hiatt, Quantum traces in quantum Teichmüller theory, Algebr. Geom. Topol. 10 (2010) 1245

[25] R M Kashaev, Quantization of Teichmüller spaces and the quantum dilogarithm, Lett. Math. Phys. 43 (1998) 105

[26] C Kassel, Quantum groups, Graduate Texts in Math. 155, Springer (1995)

[27] W B R Lickorish, An introduction to knot theory, Graduate Texts in Math. 175, Springer (1997)

[28] X Liu, The quantum Teichmüller space as a noncommutative algebraic object, J. Knot Theory Ramifications 18 (2009) 705

[29] D Mumford, J Fogarty, F Kirwan, Geometric invariant theory, Ergebnisse der Math. und ihrer Grenzgebiete (2) 34, Springer (1994)

[30] R C Penner, The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys. 113 (1987) 299

[31] H Petersson, Über eine Metrisierung der automorphen Formen und die Theorie der Poincaréschen Reihen, Math. Ann. 117 (1940) 453

[32] J H Przytycki, A S Sikora, On skein algebras and $\mathrm{SL}_2({\C})$–character varieties, Topology 39 (2000) 115

[33] W P Thurston, Minimal stretch maps between hyperbolic surfaces

[34] W P Thurston, Three-dimensional geometry and topology. Vol. 1, (S Levy, editor), Princeton Math. Series 35, Princeton Univ. Press (1997)

[35] V G Turaev, Skein quantization of Poisson algebras of loops on surfaces, Ann. Sci. École Norm. Sup. $(4)$ 24 (1991) 635

[36] A Weil, Modules des surfaces de Riemann, from: "Scientific works, Collected papers, Vol. II (1951–1964)", Springer (1979) 381

Cité par Sources :