Free planar actions of the Klein bottle group
Geometry & topology, Tome 15 (2011) no. 3, pp. 1545-1567.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We describe the structure of the free actions of the fundamental group of the Klein bottle a,baba1 = b1 by orientation preserving homeomorphisms of the plane. The main result is that a must act properly discontinuously, while b cannot act properly discontinuously. As a corollary, we describe some torsion free groups that may not act freely on the plane. We also find some properties which are reminiscent of Brouwer theory for the group , in particular that every free action is virtually wandering.

DOI : 10.2140/gt.2011.15.1545
Keywords: plane homeomorphism, free group action

Le Roux, Frédéric 1

1 Laboratoire de Mathématiques, CNRS UMR 8628, Université Paris Sud 11, F-91405 Orsay Cedex, France
@article{GT_2011_15_3_a6,
     author = {Le Roux, Fr\'ed\'eric},
     title = {Free planar actions of the {Klein} bottle group},
     journal = {Geometry & topology},
     pages = {1545--1567},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2011},
     doi = {10.2140/gt.2011.15.1545},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1545/}
}
TY  - JOUR
AU  - Le Roux, Frédéric
TI  - Free planar actions of the Klein bottle group
JO  - Geometry & topology
PY  - 2011
SP  - 1545
EP  - 1567
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1545/
DO  - 10.2140/gt.2011.15.1545
ID  - GT_2011_15_3_a6
ER  - 
%0 Journal Article
%A Le Roux, Frédéric
%T Free planar actions of the Klein bottle group
%J Geometry & topology
%D 2011
%P 1545-1567
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1545/
%R 10.2140/gt.2011.15.1545
%F GT_2011_15_3_a6
Le Roux, Frédéric. Free planar actions of the Klein bottle group. Geometry & topology, Tome 15 (2011) no. 3, pp. 1545-1567. doi : 10.2140/gt.2011.15.1545. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1545/

[1] G Baumslag, D Solitar, Some two-generator one-relator non-Hopfian groups, Bull. Amer. Math. Soc. 68 (1962) 199

[2] G D Birkhoff, Surface transformations and their dynamical applications, Acta Math. 43 (1922) 1

[3] D Calegari, Circular groups, planar groups, and the Euler class, from: "Proceedings of the Casson Fest" (editors C Gordon, Y Rieck), Geom. Topol. Monogr. 7 (2004) 431

[4] A Constantin, B Kolev, The theorem of Kerékjártó on periodic homeomorphisms of the disc and the sphere, Enseign. Math. $(2)$ 40 (1994) 193

[5] B Deroin, A Navas, Probabilistic and dynamical aspects of (left) orderable groups, in preparation

[6] É Ghys, Groups acting on the circle, Monogr. del Inst. de Mat. y Ciencias Afines 6, Inst. de Mat. y Ciencias Afine (1999)

[7] L Guillou, Théorème de translation plane de Brouwer et généralisations du théorème de Poincaré-Birkhoff, Topology 33 (1994) 331

[8] T Homma, H Terasaka, On the structure of the plane translation of Brouwer, Osaka Math. J. 5 (1953) 233

[9] B Von Kerékjártó, Über die periodischen Transformationen der Kreisscheibe und der Kugelfläche, Math. Ann. 80 (1919) 36

[10] H Kneser, Die Deformationssätze der einfach zusammenhängenden Flächen, Math. Z. 25 (1926) 362

[11] P Le Calvez, From Brouwer theory to the study of homeomorphisms of surfaces, from: "International Congress of Mathematicians. Vol. III" (editors M Sanz-Sol’e, J Soria, J L Varona, J Verdera), Eur. Math. Soc. (2006) 77

[12] F Le Roux, Bounded recurrent sets for planar homeomorphisms, Ergodic Theory Dynam. Systems 19 (1999) 1085

[13] F Le Roux, Homéomorphismes de surfaces: théorèmes de la fleur de Leau–Fatou et de la variété stable, Astérisque 292, Soc. Math. France (2004)

[14] F Le Roux, Structure des homéomorphismes de Brouwer, Geom. Topol. 9 (2005) 1689

[15] F Le Roux, Un indice qui affine l'indice de Poincaré–Lefschetz pour les homeomorphismes de surfaces, Ann. of Math. $(2)$ 171 (2010) 1531

[16] J N Mather, Topological proofs of some purely topological consequences of Carathéodory's theory of prime ends, from: "Selected studies: physics-astrophysics, mathematics, history of science" (editors T M Rassias, G M Rassias), North-Holland (1982) 225

[17] W P Thurston, Three-dimensional geometry and topology. Vol. 1, (S Levy, editor), Princeton Math. Series 35, Princeton Univ. Press (1997)

Cité par Sources :