Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that the two piecewise flat surfaces with conical singularities conjectured by E Calabi as extremal surfaces for the isosystolic problem in genus are critical with respect to some metric variations. The proof relies on a new approach to study isosystolic extremal surfaces.
Sabourau, Stéphane 1
@article{GT_2011_15_3_a4, author = {Sabourau, St\'ephane}, title = {Isosystolic genus three surfaces critical for slow metric variations}, journal = {Geometry & topology}, pages = {1477--1508}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2011}, doi = {10.2140/gt.2011.15.1477}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1477/} }
TY - JOUR AU - Sabourau, Stéphane TI - Isosystolic genus three surfaces critical for slow metric variations JO - Geometry & topology PY - 2011 SP - 1477 EP - 1508 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1477/ DO - 10.2140/gt.2011.15.1477 ID - GT_2011_15_3_a4 ER -
Sabourau, Stéphane. Isosystolic genus three surfaces critical for slow metric variations. Geometry & topology, Tome 15 (2011) no. 3, pp. 1477-1508. doi : 10.2140/gt.2011.15.1477. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1477/
[1] Infinitesimal systolic rigidity of metrics all of whose geodesics are closed and of the same length
, ,[2] Sur la systole de la sphère au voisinage de la métrique standard, Geom. Dedicata 121 (2006) 61
,[3] A local optimal diastolic inequality on the two-sphere, J. Topol. Anal. 2 (2010) 109
,[4] Inégalité isosystolique pour la bouteille de Klein, Math. Ann. 274 (1986) 439
,[5] Inégalités isosystoliques conformes pour la bouteille de Klein, Geom. Dedicata 27 (1988) 349
,[6] Inégalités isosystoliques conformes, Comment. Math. Helv. 67 (1992) 146
,[7] Entropies et rigidités des espaces localement symétriques de courbure strictement négative, Geom. Funct. Anal. 5 (1995) 731
, , ,[8] On extremals with prescribed Lagrangian densities, from: "Manifolds and geometry (Pisa, 1993)" (editors P de Bartolomeis, F Tricerri, E Vesentini), Sympos. Math. XXXVI, Cambridge Univ. Press (1996) 86
,[9] On asymptotic volume of Finsler tori, minimal surfaces in normed spaces, and symplectic filling volume, Ann. of Math. $(2)$ 156 (2002) 891
, ,[10] Boundary rigidity and filling volume minimality of metrics close to a flat one, Ann. of Math. $(2)$ 171 (2010) 1183
, ,[11] Extremal isosystolic metrics for compact surfaces, from: "Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992)" (editor A L Besse), Sémin. Congr. 1, Soc. Math. France (1996) 167
,[12] Universal volume bounds in Riemannian manifolds, from: "Surveys in differential geometry, Vol. VIII (Boston, MA, 2002)" (editor S T Yau), Surv. Differ. Geom. VIII, Int. Press (2003) 109
, ,[13] Deformations of metrics and associated harmonic maps, Proc. Indian Acad. Sci. Math. Sci. 90 (1981) 33
, ,[14] Riemannian manifolds admitting isometric immersions by their first eigenfunctions, Pacific J. Math. 195 (2000) 91
, ,[15] Filling Riemannian manifolds, J. Differential Geom. 18 (1983) 1
,[16] Metric structures for Riemannian and non-Riemannian spaces, Progress in Math. 152, Birkhäuser (1999)
,[17] Loewner's torus inequality with isosystolic defect, J. Geom. Anal. 19 (2009) 796
, , ,[18] On two-dimensional minimal fillings, Algebra i Analiz 13 (2001) 26
,[19] Systolic geometry and topology, Math. Surveys and Monogr. 137, Amer. Math. Soc. (2007)
,[20] Entropy of systolically extremal surfaces and asymptotic bounds, Ergodic Theory Dynam. Systems 25 (2005) 1209
, ,[21] Hyperelliptic surfaces are Loewner, Proc. Amer. Math. Soc. 134 (2006) 1189
, ,[22] An optimal systolic inequality for CAT$(0)$ metrics in genus two, Pacific J. Math. 227 (2006) 95
, ,[23] Berger's isoperimetric problem and minimal immersions of surfaces, Geom. Funct. Anal. 6 (1996) 877
,[24] Some inequalities in certain nonorientable Riemannian manifolds, Pacific J. Math. 2 (1952) 55
,[25] Systoles des surfaces plates singulières de genre deux, Math. Z. 247 (2004) 693
,[26] Local extremality of the Calabi–Croke sphere for the length of the shortest closed geodesic, J. Lond. Math. Soc. $(2)$ 82 (2010) 549
,[27] Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math. Soc. 324 (1991) 793
,Cité par Sources :