Line patterns in free groups
Geometry & topology, Tome 15 (2011) no. 3, pp. 1419-1475.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study line patterns in a free group by considering the topology of the decomposition space, a quotient of the boundary at infinity of the free group related to the line pattern. We show that the group of quasi-isometries preserving a line pattern in a free group acts by isometries on a related space if and only if there are no cut pairs in the decomposition space. We also give an algorithm to detect such cut pairs.

DOI : 10.2140/gt.2011.15.1419
Classification : 20F65, 20E05
Keywords: free group, quasi-isometry, rigidity, line pattern, Whitehead graph, Whitehead's Algorithm

Cashen, Christopher H 1 ; Macura, Nataša 2

1 Department of Mathematics, University of Utah, 155 S 1400 E Room 233, Salt Lake City UT 84112-0090, USA
2 Department of Mathematics, Trinity University, San Antonio TX 78212, USA
@article{GT_2011_15_3_a3,
     author = {Cashen, Christopher~H and Macura, Nata\v{s}a},
     title = {Line patterns in free groups},
     journal = {Geometry & topology},
     pages = {1419--1475},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2011},
     doi = {10.2140/gt.2011.15.1419},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1419/}
}
TY  - JOUR
AU  - Cashen, Christopher H
AU  - Macura, Nataša
TI  - Line patterns in free groups
JO  - Geometry & topology
PY  - 2011
SP  - 1419
EP  - 1475
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1419/
DO  - 10.2140/gt.2011.15.1419
ID  - GT_2011_15_3_a3
ER  - 
%0 Journal Article
%A Cashen, Christopher H
%A Macura, Nataša
%T Line patterns in free groups
%J Geometry & topology
%D 2011
%P 1419-1475
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1419/
%R 10.2140/gt.2011.15.1419
%F GT_2011_15_3_a3
Cashen, Christopher H; Macura, Nataša. Line patterns in free groups. Geometry & topology, Tome 15 (2011) no. 3, pp. 1419-1475. doi : 10.2140/gt.2011.15.1419. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1419/

[1] J A Behrstock, W D Neumann, Quasi-isometric classification of graph manifold groups, Duke Math. J. 141 (2008) 217

[2] B H Bowditch, Cut points and canonical splittings of hyperbolic groups, Acta Math. 180 (1998) 145

[3] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grund. der Math. Wissenschaften 319, Springer (1999)

[4] C H Cashen, Quasi-isometries between tubular groups, Groups Geom. Dyn. 4 (2010) 473

[5] C H Cashen, N Macura, Quasi-isometries of mapping tori of linearly growing free group automorphisms, in preparation

[6] M J Dunwoody, The accessibility of finitely presented groups, Invent. Math. 81 (1985) 449

[7] M Gromov, Hyperbolic groups, from: "Essays in group theory" (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[8] M Kapovich, Energy of harmonic functions and Gromov's proof of Stallings' theorem

[9] S Lim, A Thomas, Covering theory for complexes of groups, J. Pure Appl. Algebra 212 (2008) 1632

[10] R C Lyndon, P E Schupp, Combinatorial group theory, Classics in Math., Springer (2001)

[11] J F Manning, Virtually geometric words and Whitehead's algorithm, Math. Res. Lett. 17 (2010) 917

[12] R Martin, Non-uniquely ergodic foliations of thin-type, measured currents and automorphisms of free groups, PhD thesis, University of California, Los Angeles (1995)

[13] G A Niblo, A geometric proof of Stallings' theorem on groups with more than one end, Geom. Dedicata 105 (2004) 61

[14] J Nielsen, Die Isomorphismengruppe der freien Gruppen, Math. Ann. 91 (1924) 169

[15] J P Otal, Certaines relations d'équivalence sur l'ensemble des bouts d'un groupe libre, J. London Math. Soc. $(2)$ 46 (1992) 123

[16] P Papasoglu, Quasi-isometry invariance of group splittings, Ann. of Math. $(2)$ 161 (2005) 759

[17] M Sageev, Ends of group pairs and non-positively curved cube complexes, Proc. London Math. Soc. $(3)$ 71 (1995) 585

[18] R E Schwartz, Symmetric patterns of geodesics and automorphisms of surface groups, Invent. Math. 128 (1997) 177

[19] J R Stallings, Whitehead graphs on handlebodies, from: "Geometric group theory down under (Canberra, 1996)" (editors J Cossey, C F Miller III, W D Neumann, M Shapiro), de Gruyter (1999) 317

[20] R Stong, Diskbusting elements of the free group, Math. Res. Lett. 4 (1997) 201

[21] J H C Whitehead, On certain sets of elements in a free group, Proc. London Math. Soc. (2) 41 (1936) 48

[22] J H C Whitehead, On equivalent sets of elements in a free group, Ann. of Math. $(2)$ 37 (1936) 782

Cité par Sources :