Deformed Hamiltonian Floer theory, capacity estimates and Calabi quasimorphisms
Geometry & topology, Tome 15 (2011) no. 3, pp. 1313-1417.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We develop a family of deformations of the differential and of the pair-of-pants product on the Hamiltonian Floer complex of a symplectic manifold (M,ω) which upon passing to homology yields ring isomorphisms with the big quantum homology of M. By studying the properties of the resulting deformed version of the Oh–Schwarz spectral invariants, we obtain a Floer-theoretic interpretation of a result of Lu which bounds the Hofer–Zehnder capacity of M when M has a nonzero Gromov–Witten invariant with two point constraints, and we produce a new algebraic criterion for (M,ω) to admit a Calabi quasimorphism and a symplectic quasistate. This latter criterion is found to hold whenever M has generically semisimple quantum homology in the sense considered by Dubrovin and Manin (this includes all compact toric M), and also whenever M is a point blowup of an arbitrary closed symplectic manifold.

DOI : 10.2140/gt.2011.15.1313
Classification : 53D40, 53D45
Keywords: Hamiltonian Floer theory, spectral invariant, quasimorphism, semisimple quantum homology

Usher, Michael 1

1 Department of Mathematics, University of Georgia, Athens GA 30602, USA
@article{GT_2011_15_3_a2,
     author = {Usher, Michael},
     title = {Deformed {Hamiltonian} {Floer} theory, capacity estimates and {Calabi} quasimorphisms},
     journal = {Geometry & topology},
     pages = {1313--1417},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2011},
     doi = {10.2140/gt.2011.15.1313},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1313/}
}
TY  - JOUR
AU  - Usher, Michael
TI  - Deformed Hamiltonian Floer theory, capacity estimates and Calabi quasimorphisms
JO  - Geometry & topology
PY  - 2011
SP  - 1313
EP  - 1417
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1313/
DO  - 10.2140/gt.2011.15.1313
ID  - GT_2011_15_3_a2
ER  - 
%0 Journal Article
%A Usher, Michael
%T Deformed Hamiltonian Floer theory, capacity estimates and Calabi quasimorphisms
%J Geometry & topology
%D 2011
%P 1313-1417
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1313/
%R 10.2140/gt.2011.15.1313
%F GT_2011_15_3_a2
Usher, Michael. Deformed Hamiltonian Floer theory, capacity estimates and Calabi quasimorphisms. Geometry & topology, Tome 15 (2011) no. 3, pp. 1313-1417. doi : 10.2140/gt.2011.15.1313. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1313/

[1] A Banyaga, Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique, Comment. Math. Helv. 53 (1978) 174

[2] A Bayer, Semisimple quantum cohomology and blowups, Int. Math. Res. Not. (2004) 2069

[3] A Bayer, Y I Manin, (Semi)simple exercises in quantum cohomology, from: "The Fano Conference" (editors A Collino, A Conte, M Marchisio), Univ. Torino (2004) 143

[4] N Bourbaki, Algebra II: Chapters 4–7, Elements of Math., Springer (2003)

[5] D Calegari, scl, MSJ Memoirs 20, Math. Soc. of Japan (2009)

[6] C H Cho, Non-displaceable Lagrangian submanifolds and Floer cohomology with non-unitary line bundle, J. Geom. Phys. 58 (2008) 1465

[7] G Ciolli, On the quantum cohomology of some Fano threefolds and a conjecture of Dubrovin, Internat. J. Math. 16 (2005) 823

[8] T Delzant, Hamiltoniens périodiques et images convexes de l'application moment, Bull. Soc. Math. France 116 (1988) 315

[9] B Dubrovin, Geometry and analytic theory of Frobenius manifolds, from: "Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998)" (1998) 315

[10] D Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Math. 150, Springer (1995)

[11] Y Eliashberg, L Polterovich, Symplectic quasi-states on the quadric surface and Lagrangian submanifolds

[12] M Entov, L Polterovich, Calabi quasimorphism and quantum homology, Int. Math. Res. Not. (2003) 1635

[13] M Entov, L Polterovich, Quasi-states and symplectic intersections, Comment. Math. Helv. 81 (2006) 75

[14] M Entov, L Polterovich, Symplectic quasi-states and semi-simplicity of quantum homology, from: "Toric topology" (editors M Harada, Y Karshon, M Masuda, T Panov), Contemp. Math. 460, Amer. Math. Soc. (2008) 47

[15] M Entov, L Polterovich, Rigid subsets of symplectic manifolds, Compos. Math. 145 (2009) 773

[16] M Entov, L Polterovich, F Zapolsky, Quasi-morphisms and the Poisson bracket, Pure Appl. Math. Q. 3 (2007) 1037

[17] A Floer, The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math. 41 (1988) 775

[18] A Floer, H Hofer, D Salamon, Transversality in elliptic Morse theory for the symplectic action, Duke Math. J. 80 (1995) 251

[19] K Fukaya, Floer homology for families—a progress report, from: "Integrable systems, topology, and physics (Tokyo, 2000)" (editors M Guest, R Miyaoka, Y Ohnita), Contemp. Math. 309, Amer. Math. Soc. (2002) 33

[20] K Fukaya, Y G Oh, H Ohta, K Ono, Spectral invariants with bulk, quasimorphisms and Lagrangian Floer theory

[21] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian intersection Floer theory: Anomaly and obstruction. Parts I–II, AMS/IP Studies in Adv. Math., Amer. Math. Soc. (2009)

[22] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian Floer theory on compact toric manifolds. I, Duke Math. J. 151 (2010) 23

[23] K Fukaya, K Ono, Arnold conjecture and Gromov–Witten invariant, Topology 38 (1999) 933

[24] A Gathmann, Gromov–Witten invariants of blow-ups, J. Algebraic Geom. 10 (2001) 399

[25] A Grothendieck, Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. I, Inst. Hautes Études Sci. Publ. Math. (1964) 259

[26] A Grothendieck, Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. (1967) 361

[27] R Hartshorne, Algebraic geometry, Graduate Texts in Math. 52, Springer (1977)

[28] C Hertling, Y I Manin, C Teleman, An update on semisimple quantum cohomology and $F$–manifolds, Tr. Mat. Inst. Steklova 264 (2009) 69

[29] H Hofer, D A Salamon, Floer homology and Novikov rings, from: "The Floer memorial volume" (editors H Hofer, C H Taubes, A Weinstein, E Zehnder), Progr. Math. 133, Birkhäuser (1995) 483

[30] H Hofer, C Viterbo, The Weinstein conjecture in the presence of holomorphic spheres, Comm. Pure Appl. Math. 45 (1992) 583

[31] H Hofer, K Wysocki, E Zehnder, A general Fredholm theory. I: A splicing-based differential geometry, J. Eur. Math. Soc. 9 (2007) 841

[32] J Hu, Gromov–Witten invariants of blow-ups along points and curves, Math. Z. 233 (2000) 709

[33] H Iritani, Convergence of quantum cohomology by quantum Lefschetz, J. Reine Angew. Math. 610 (2007) 29

[34] M Kontsevich, Y Manin, Gromov–Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994) 525

[35] H V Lê, K Ono, Cup-length estimates for symplectic fixed points, from: "Contact and symplectic geometry (Cambridge, 1994)" (editor C B Thomas), Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 268

[36] J Li, G Tian, Virtual moduli cycles and Gromov–Witten invariants of general symplectic manifolds, from: "Topics in symplectic $4$–manifolds (Irvine, CA, 1996)" (editor R J Stern), First Int. Press Lect. Ser. 1, Int. Press (1998) 47

[37] G Liu, G Tian, Floer homology and Arnold conjecture, J. Differential Geom. 49 (1998) 1

[38] G Liu, G Tian, Weinstein conjecture and GW–invariants, Commun. Contemp. Math. 2 (2000) 405

[39] G Lu, An explicit isomorphism between Floer homology and quantum homology, Pacific J. Math. 213 (2004) 319

[40] G Lu, Gromov–Witten invariants and pseudo symplectic capacities, Israel J. Math. 156 (2006) 1

[41] Y I Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, Amer. Math. Soc. Colloq. Publ. 47, Amer. Math. Soc. (1999)

[42] H Matsumura, Commutative algebra, Math. Lecture Note Ser. 56, Benjamin/Cummings (1980)

[43] D Mcduff, Hamiltonian $S^1$–manifolds are uniruled, Duke Math. J. 146 (2009) 449

[44] D Mcduff, D Salamon, $J$–holomorphic curves and symplectic topology, Amer. Math. Soc. Colloq. Publ. 52, Amer. Math. Soc. (2004)

[45] Y G Oh, Spectral invariants and the length minimizing property of Hamiltonian paths, Asian J. Math. 9 (2005) 1

[46] Y G Oh, Lectures on Floer theory and spectral invariants of Hamiltonian flows, from: "Morse theoretic methods in nonlinear analysis and in symplectic topology" (editors P Biran, O Cornea, F Lalonde), NATO Sci. Ser. II Math. Phys. Chem. 217, Springer (2006) 321

[47] Y G Oh, K Zhu, Floer trajectories with immersed nodes and scale-dependent gluing

[48] Y Ostrover, I Tyomkin, On the quantum homology algebra of toric Fano manifolds, Selecta Math. $($N.S.$)$ 15 (2009) 121

[49] S Piunikhin, D Salamon, M Schwarz, Symplectic Floer–Donaldson theory and quantum cohomology, from: "Contact and symplectic geometry (Cambridge, 1994)" (editor C B Thomas), Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 171

[50] G Pólya, G Szegő, Problems and theorems in analysis. I: Series, integral calculus, theory of functions, Grund. der Math. Wissenschaften 193, Springer (1978)

[51] A F Ritter, Novikov-symplectic cohomology and exact Lagrangian embeddings, Geom. Topol. 13 (2009) 943

[52] J Robbin, D Salamon, The Maslov index for paths, Topology 32 (1993) 827

[53] Y Ruan, Virtual neighborhoods and pseudo-holomorphic curves, from: "Proceedings of 6th Gökova Geometry-Topology Conference", Turkish J. Math. 23 (1999) 161

[54] Y Ruan, G Tian, A mathematical theory of quantum cohomology, J. Differential Geom. 42 (1995) 259

[55] D Salamon, Lectures on Floer homology, from: "Symplectic geometry and topology (Park City, UT, 1997)" (editors Y Eliashberg, L Traynor), IAS/Park City Math. Ser. 7, Amer. Math. Soc. (1999) 143

[56] M Schwarz, Cohomology operations from $S^1$–cobordisms in Floer homology, PhD thesis, ETH Zürich (1995)

[57] M Schwarz, On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math. 193 (2000) 419

[58] The Stacks Project Authors, The stacks project

[59] R Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954) 17

[60] M Usher, Spectral numbers in Floer theories, Compos. Math. 144 (2008) 1581

[61] M Usher, Duality in filtered Floer–Novikov complexes, J. Topol. Anal. 2 (2010) 233

[62] M Usher, The sharp energy-capacity inequality, Commun. Contemp. Math. 12 (2010) 457

[63] M Usher, Boundary depth in Hamiltonian Floer theory and its applications to Hamiltonian dynamics and coisotropic submanifolds, Israel J. Math. 184 (2011) 1

[64] E Witten, On the structure of the topological phase of two-dimensional gravity, Nuclear Phys. B 340 (1990) 281

[65] E Witten, Two-dimensional gravity and intersection theory on moduli space, from: "Surveys in differential geometry (Cambridge, MA, 1990)", Lehigh Univ. (1991) 243

Cité par Sources :