Minimal pseudo-Anosov translation lengths on the complex of curves
Geometry & topology, Tome 15 (2011) no. 3, pp. 1297-1312.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We establish bounds on the minimal asymptotic pseudo-Anosov translation lengths on the complex of curves of orientable surfaces. In particular, for a closed surface with genus g 2, we show that there are positive constants a1 < a2 such that the minimal translation length is bounded below and above by a1g2 and a2g2.

DOI : 10.2140/gt.2011.15.1297
Classification : 30F60, 32G15
Keywords: mapping class group, pseudo-Anosov map, complex of curves, Teichmüller

Gadre, Vaibhav 1 ; Tsai, Chia-Yen 2

1 Department of Mathematics, Harvard University, Cambridge MA 02138, USA
2 Department of Mathematics, University of Illinois Urbana-Champaign, Urbana IL 61801, USA
@article{GT_2011_15_3_a1,
     author = {Gadre, Vaibhav and Tsai, Chia-Yen},
     title = {Minimal {pseudo-Anosov} translation lengths on the complex of curves},
     journal = {Geometry & topology},
     pages = {1297--1312},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2011},
     doi = {10.2140/gt.2011.15.1297},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1297/}
}
TY  - JOUR
AU  - Gadre, Vaibhav
AU  - Tsai, Chia-Yen
TI  - Minimal pseudo-Anosov translation lengths on the complex of curves
JO  - Geometry & topology
PY  - 2011
SP  - 1297
EP  - 1312
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1297/
DO  - 10.2140/gt.2011.15.1297
ID  - GT_2011_15_3_a1
ER  - 
%0 Journal Article
%A Gadre, Vaibhav
%A Tsai, Chia-Yen
%T Minimal pseudo-Anosov translation lengths on the complex of curves
%J Geometry & topology
%D 2011
%P 1297-1312
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1297/
%R 10.2140/gt.2011.15.1297
%F GT_2011_15_3_a1
Gadre, Vaibhav; Tsai, Chia-Yen. Minimal pseudo-Anosov translation lengths on the complex of curves. Geometry & topology, Tome 15 (2011) no. 3, pp. 1297-1312. doi : 10.2140/gt.2011.15.1297. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1297/

[1] M Bestvina, M Handel, Train-tracks for surface homeomorphisms, Topology 34 (1995) 109

[2] B H Bowditch, Tight geodesics in the curve complex, Invent. Math. 171 (2008) 281

[3] B Farb, C J Leininger, D Margalit, The lower central series and pseudo-Anosov dilatations, Amer. J. Math. 130 (2008) 799

[4] F R Gantmacher, The theory of matrices. Vols. 1, 2, Translated by K A Hirsch, Chelsea Publishing Co. (1959)

[5] H A Masur, Y N Minsky, Geometry of the complex of curves. I: Hyperbolicity, Invent. Math. 138 (1999) 103

[6] Y N Minsky, Curve complexes, surfaces and $3$–manifolds, from: "International Congress of Mathematicians. Vol. II" (editors M Sanz-Solé, J Soria, J L Varona, J Verdera), Eur. Math. Soc. (2006) 1001

[7] R C Penner, A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc. 310 (1988) 179

[8] R C Penner, Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991) 443

[9] R C Penner, J L Harer, Combinatorics of train tracks, Annals of Math. Studies 125, Princeton Univ. Press (1992)

[10] E Seneta, Nonnegative matrices and Markov chains, Springer Series in Statistics, Springer (1981)

[11] C Y Tsai, The asymptotic behavior of least pseudo-Anosov dilatations, Geom. Topol. 13 (2009) 2253

Cité par Sources :