Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We establish bounds on the minimal asymptotic pseudo-Anosov translation lengths on the complex of curves of orientable surfaces. In particular, for a closed surface with genus , we show that there are positive constants such that the minimal translation length is bounded below and above by and .
Gadre, Vaibhav 1 ; Tsai, Chia-Yen 2
@article{GT_2011_15_3_a1, author = {Gadre, Vaibhav and Tsai, Chia-Yen}, title = {Minimal {pseudo-Anosov} translation lengths on the complex of curves}, journal = {Geometry & topology}, pages = {1297--1312}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2011}, doi = {10.2140/gt.2011.15.1297}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1297/} }
TY - JOUR AU - Gadre, Vaibhav AU - Tsai, Chia-Yen TI - Minimal pseudo-Anosov translation lengths on the complex of curves JO - Geometry & topology PY - 2011 SP - 1297 EP - 1312 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1297/ DO - 10.2140/gt.2011.15.1297 ID - GT_2011_15_3_a1 ER -
%0 Journal Article %A Gadre, Vaibhav %A Tsai, Chia-Yen %T Minimal pseudo-Anosov translation lengths on the complex of curves %J Geometry & topology %D 2011 %P 1297-1312 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1297/ %R 10.2140/gt.2011.15.1297 %F GT_2011_15_3_a1
Gadre, Vaibhav; Tsai, Chia-Yen. Minimal pseudo-Anosov translation lengths on the complex of curves. Geometry & topology, Tome 15 (2011) no. 3, pp. 1297-1312. doi : 10.2140/gt.2011.15.1297. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1297/
[1] Train-tracks for surface homeomorphisms, Topology 34 (1995) 109
, ,[2] Tight geodesics in the curve complex, Invent. Math. 171 (2008) 281
,[3] The lower central series and pseudo-Anosov dilatations, Amer. J. Math. 130 (2008) 799
, , ,[4] The theory of matrices. Vols. 1, 2, Translated by K A Hirsch, Chelsea Publishing Co. (1959)
,[5] Geometry of the complex of curves. I: Hyperbolicity, Invent. Math. 138 (1999) 103
, ,[6] Curve complexes, surfaces and $3$–manifolds, from: "International Congress of Mathematicians. Vol. II" (editors M Sanz-Solé, J Soria, J L Varona, J Verdera), Eur. Math. Soc. (2006) 1001
,[7] A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc. 310 (1988) 179
,[8] Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991) 443
,[9] Combinatorics of train tracks, Annals of Math. Studies 125, Princeton Univ. Press (1992)
, ,[10] Nonnegative matrices and Markov chains, Springer Series in Statistics, Springer (1981)
,[11] The asymptotic behavior of least pseudo-Anosov dilatations, Geom. Topol. 13 (2009) 2253
,Cité par Sources :