Biharmonic functions on groups and limit theorems for quasimorphisms along random walks
Geometry & topology, Tome 15 (2011) no. 1, pp. 123-143.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show for very general classes of measures on locally compact second countable groups that every Borel measurable quasimorphism is at bounded distance from a quasi-biharmonic one. This allows us to deduce nondegenerate central limit theorems and laws of the iterated logarithm for such quasimorphisms along regular random walks on topological groups using classical martingale limit theorems of Billingsley and Stout. For quasi-biharmonic quasimorphisms on countable groups we also obtain integral representations using martingale convergence.

DOI : 10.2140/gt.2011.15.123
Keywords: quasimorphism, central limit theorem, biharmonic function, random walks, bounded cohomology

Björklund, Michael 1 ; Hartnick, Tobias 2

1 Departement Mathematik, ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
2 Mathematics Department, Technion - Israel Institute of Technology, 32000 Haifa, Israel
@article{GT_2011_15_1_a3,
     author = {Bj\"orklund, Michael and Hartnick, Tobias},
     title = {Biharmonic functions on groups and limit theorems for quasimorphisms along random walks},
     journal = {Geometry & topology},
     pages = {123--143},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2011},
     doi = {10.2140/gt.2011.15.123},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.123/}
}
TY  - JOUR
AU  - Björklund, Michael
AU  - Hartnick, Tobias
TI  - Biharmonic functions on groups and limit theorems for quasimorphisms along random walks
JO  - Geometry & topology
PY  - 2011
SP  - 123
EP  - 143
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.123/
DO  - 10.2140/gt.2011.15.123
ID  - GT_2011_15_1_a3
ER  - 
%0 Journal Article
%A Björklund, Michael
%A Hartnick, Tobias
%T Biharmonic functions on groups and limit theorems for quasimorphisms along random walks
%J Geometry & topology
%D 2011
%P 123-143
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.123/
%R 10.2140/gt.2011.15.123
%F GT_2011_15_1_a3
Björklund, Michael; Hartnick, Tobias. Biharmonic functions on groups and limit theorems for quasimorphisms along random walks. Geometry & topology, Tome 15 (2011) no. 1, pp. 123-143. doi : 10.2140/gt.2011.15.123. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.123/

[1] R Azencott, Espaces de Poisson des groupes localement compacts, Lecture Notes in Math. 148, Springer (1970)

[2] P Billingsley, The Lindeberg–Lévy theorem for martingales, Proc. Amer. Math. Soc. 12 (1961) 788

[3] M Burger, N Monod, Bounded cohomology of lattices in higher rank Lie groups, J. Eur. Math. Soc. $($JEMS$)$ 1 (1999) 199

[4] D Calegari, scl, MSJ Memoirs 20, Math. Soc. Japan (2009)

[5] D Calegari, K Fujiwara, Combable functions, quasimorphisms, and the central limit theorem, Ergodic Theory Dynam. Systems 30 (2010) 1343

[6] D Calegari, J Maher, Statistics and compression of scl

[7] H Furstenberg, Noncommuting random products, Trans. Amer. Math. Soc. 108 (1963) 377

[8] M Horsham, Central limit theorems for quasimorphisms on surface groups, PhD thesis, University of Manchester (2008)

[9] M Horsham, R Sharp, Lengths, quasi-morphisms and statistics for free groups, from: "Spectral analysis in geometry and number theory" (editors M Kotani, H Naito, T Tate), Contemp. Math. 484, Amer. Math. Soc. (2009) 219

[10] V A Kaĭmanovich, Double ergodicity of the Poisson boundary and applications to bounded cohomology, Geom. Funct. Anal. 13 (2003) 852

[11] V A Kaĭmanovich, A M Vershik, Random walks on discrete groups: boundary and entropy, Ann. Probab. 11 (1983) 457

[12] J Komlós, A generalization of a problem of Steinhaus, Acta Math. Acad. Sci. Hungar. 18 (1967) 217

[13] P B Larson, The filter dichotomy and medial limits, J. Math. Log. 9 (2009) 159

[14] P A Meyer, Limites médiales, d'après Mokobodzki, from: "Séminaire de Probabilités, VII (Univ. Strasbourg, année universitaire 1971–1972)" (editors C Dellacherie, P A Meyer, M Weil), Lecture Notes in Math. 321, Springer (1973) 198

[15] D Normann, Martin's axiom and medial functions, Math. Scand. 38 (1976) 167

[16] J C Picaud, Cohomologie bornée des surfaces et courants géodésiques, Bull. Soc. Math. France 125 (1997) 115

[17] W Stout, The Hartman–Wintner law of the iterated logarithm for martingales, Ann. Math. Stat. 41 (1970) 2158

Cité par Sources :