Cosmetic surgery in L–space homology spheres
Geometry & topology, Tome 15 (2011) no. 2, pp. 1157-1168.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let K be a nontrivial knot in S3, and let r and r be two distinct rational numbers of same sign. We prove that there is no orientation-preserving homeomorphism between the manifolds Sr3(K) and Sr3(K). We further generalize this uniqueness result to knots in arbitrary L–space homology spheres.

DOI : 10.2140/gt.2011.15.1157
Classification : 57M25, 57M27
Keywords: Dehn surgery, cosmetic surgery, Heegaard Floer homology

Wu, Zhongtao 1

1 Department of Mathematics, California Institute of Technology, Pasadena CA 91125, USA
@article{GT_2011_15_2_a14,
     author = {Wu, Zhongtao},
     title = {Cosmetic surgery in {L{\textendash}space} homology spheres},
     journal = {Geometry & topology},
     pages = {1157--1168},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2011},
     doi = {10.2140/gt.2011.15.1157},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1157/}
}
TY  - JOUR
AU  - Wu, Zhongtao
TI  - Cosmetic surgery in L–space homology spheres
JO  - Geometry & topology
PY  - 2011
SP  - 1157
EP  - 1168
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1157/
DO  - 10.2140/gt.2011.15.1157
ID  - GT_2011_15_2_a14
ER  - 
%0 Journal Article
%A Wu, Zhongtao
%T Cosmetic surgery in L–space homology spheres
%J Geometry & topology
%D 2011
%P 1157-1168
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1157/
%R 10.2140/gt.2011.15.1157
%F GT_2011_15_2_a14
Wu, Zhongtao. Cosmetic surgery in L–space homology spheres. Geometry & topology, Tome 15 (2011) no. 2, pp. 1157-1168. doi : 10.2140/gt.2011.15.1157. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1157/

[1] S Boyer, D Lines, Surgery formulae for Casson's invariant and extensions to homology lens spaces, J. Reine Angew. Math. 405 (1990) 181

[2] A J Casson, C M Gordon, On slice knots in dimension three, from: "Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., 1976), Part 2" (editor R J Milgram), Proc. Sympos. Pure Math. XXXII, Amer. Math. Soc. (1978) 39

[3] C M Gordon, J Luecke, Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989) 371

[4] R Kirby, Editor, Problems in low-dimensional topology, from: "Geometric topology (Athens, GA, 1993)", AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 35

[5] P Kronheimer, T Mrowka, P Ozsváth, Z Szabó, Monopoles and lens space surgeries, Ann. of Math. $(2)$ 165 (2007) 457

[6] M Lackenby, Dehn surgery on knots in $3$–manifolds, J. Amer. Math. Soc. 10 (1997) 835

[7] Y Ni, Non-separating spheres and twisted Heegaard Floer homology

[8] Y Ni, Link Floer homology detects the Thurston norm, Geom. Topol. 13 (2009) 2991

[9] P Ozsváth, Z Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615

[10] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58

[11] P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. $(2)$ 159 (2004) 1159

[12] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. $(2)$ 159 (2004) 1027

[13] P Ozsváth, Z Szabó, On knot Floer homology and lens space surgeries, Topology 44 (2005) 1281

[14] P Ozsváth, Z Szabó, Knot Floer homology and integer surgeries, Algebr. Geom. Topol. 8 (2008) 101

[15] P Ozsváth, Z Szabó, Knot Floer homology and rational surgeries, Algebr. Geom. Topol. 11 (2011) 1

[16] J Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003)

[17] K Walker, An extension of Casson's invariant, Annals of Math. Studies 126, Princeton Univ. Press (1992)

[18] J Wang, Cosmetic surgeries on genus one knots, Algebr. Geom. Topol. 6 (2006) 1491

Cité par Sources :