Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We construct a counterexamples in dimensions to Gromov’s conjecture that the macroscopic dimension of rationally essential –dimensional manifolds equals .
Dranishnikov, Alexander 1
@article{GT_2011_15_2_a12, author = {Dranishnikov, Alexander}, title = {On macroscopic dimension of rationally essential manifolds}, journal = {Geometry & topology}, pages = {1107--1124}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2011}, doi = {10.2140/gt.2011.15.1107}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1107/} }
TY - JOUR AU - Dranishnikov, Alexander TI - On macroscopic dimension of rationally essential manifolds JO - Geometry & topology PY - 2011 SP - 1107 EP - 1124 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1107/ DO - 10.2140/gt.2011.15.1107 ID - GT_2011_15_2_a12 ER -
Dranishnikov, Alexander. On macroscopic dimension of rationally essential manifolds. Geometry & topology, Tome 15 (2011) no. 2, pp. 1107-1124. doi : 10.2140/gt.2011.15.1107. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1107/
[1] On asymptotic dimension of groups acting on trees, Geom. Dedicata 103 (2004) 89
, ,[2] Aperiodic tilings, positive scalar curvature and amenability of spaces, J. Amer. Math. Soc. 5 (1992) 907
, ,[3] On Gromov's scalar curvature conjecture, Proc. Amer. Math. Soc. 138 (2010) 1517
, ,[4] Cohomology of groups, Graduate Texts in Mathematics 87, Springer (1994)
,[5] Large and small group homology, J. Topol. 3 (2010) 463
, ,[6] Macroscopic dimension and essential manifolds, to appear, from: "Proceedings of the Conference dedicated to the 75th anniversary of the Steklov Mathematical Institute, Moscow, 2009", Proc. Steklov Inst. Math.
,[7] On the Berstein–Svarc theorem in dimension 2, Math. Proc. Cambridge Philos. Soc. 146 (2009) 407
, ,[8] Cohomological lower bounds for isoperimetric functions on groups, Topology 37 (1998) 1031
,[9] Filling Riemannian manifolds, J. Differential Geom. 18 (1983) 1
,[10] Asymptotic invariants of infinite groups, from: "Geometric group theory, Vol. 2 (Sussex, 1991)", London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press (1993) 1
,[11] Positive curvature, macroscopic dimension, spectral gaps and higher signatures, from: "Functional analysis on the eve of the 21st century, Vol. II (New Brunswick, NJ, 1993)", Progr. Math. 132, Birkhäuser (1996) 1
,[12] The genus of a fibered space, Trudy Moskov. Mat. Obšč. 10 (1961) 217
,Cité par Sources :