An algorithm to determine the Heegaard genus of a 3–manifold
Geometry & topology, Tome 15 (2011) no. 2, pp. 1029-1106.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We give an algorithmic proof of the theorem that a closed orientable irreducible and atoroidal 3–manifold has only finitely many Heegaard splittings in each genus, up to isotopy. The proof gives an algorithm to determine the Heegaard genus of an atoroidal 3–manifold.

DOI : 10.2140/gt.2011.15.1029
Keywords: Heegaard splitting, algorithm, Heegaard genus, branched surface

Li, Tao 1

1 Department of Mathematics, Boston College, Chestnut Hill MA 02467, USA
@article{GT_2011_15_2_a11,
     author = {Li, Tao},
     title = {An algorithm to determine the {Heegaard} genus of a 3{\textendash}manifold},
     journal = {Geometry & topology},
     pages = {1029--1106},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2011},
     doi = {10.2140/gt.2011.15.1029},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1029/}
}
TY  - JOUR
AU  - Li, Tao
TI  - An algorithm to determine the Heegaard genus of a 3–manifold
JO  - Geometry & topology
PY  - 2011
SP  - 1029
EP  - 1106
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1029/
DO  - 10.2140/gt.2011.15.1029
ID  - GT_2011_15_2_a11
ER  - 
%0 Journal Article
%A Li, Tao
%T An algorithm to determine the Heegaard genus of a 3–manifold
%J Geometry & topology
%D 2011
%P 1029-1106
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1029/
%R 10.2140/gt.2011.15.1029
%F GT_2011_15_2_a11
Li, Tao. An algorithm to determine the Heegaard genus of a 3–manifold. Geometry & topology, Tome 15 (2011) no. 2, pp. 1029-1106. doi : 10.2140/gt.2011.15.1029. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1029/

[1] I Agol, T Li, An algorithm to detect laminar $3$–manifolds, Geom. Topol. 7 (2003) 287

[2] M Boileau, D J Collins, H Zieschang, Genus $2$ Heegaard decompositions of small Seifert manifolds, Ann. Inst. Fourier (Grenoble) 41 (1991) 1005

[3] F Bonahon, J P Otal, Scindements de Heegaard des espaces lenticulaires, Ann. Sci. École Norm. Sup. $(4)$ 16 (1983)

[4] A J Casson, C M Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987) 275

[5] W Floyd, U Oertel, Incompressible surfaces via branched surfaces, Topology 23 (1984) 117

[6] W Haken, Theorie der Normalflächen, Acta Math. 105 (1961) 245

[7] W Jaco, U Oertel, An algorithm to decide if a $3$–manifold is a Haken manifold, Topology 23 (1984) 195

[8] W Jaco, J H Rubinstein, $0$–efficient triangulations of $3$–manifolds, J. Differential Geom. 65 (2003) 61

[9] K Johannson, Heegaard surfaces in Haken $3$–manifolds, Bull. Amer. Math. Soc. $($N.S.$)$ 23 (1990) 91

[10] K Johannson, Topology and combinatorics of $3$–manifolds, Lecture Notes in Math. 1599, Springer (1995)

[11] H Kneser, Geschlossene Flachen in Dreidimensionalen Mannigfaltigkeiten, Jahres. der Deut. Math. Verein. 38 (1929) 248

[12] T Li, Laminar branched surfaces in $3$–manifolds, Geom. Topol. 6 (2002) 153

[13] T Li, Heegaard surfaces and measured laminations. II: Non-Haken $3$_-manifolds, J. Amer. Math. Soc. 19 (2006) 625

[14] T Li, Heegaard surfaces and measured laminations. I: The Waldhausen conjecture, Invent. Math. 167 (2007) 135

[15] Y Moriah, Heegaard splittings of Seifert fibered spaces, Invent. Math. 91 (1988) 465

[16] U Oertel, Incompressible branched surfaces, Invent. Math. 76 (1984) 385

[17] U Oertel, Measured laminations in $3$–manifolds, Trans. Amer. Math. Soc. 305 (1988) 531

[18] J H Rubinstein, Polyhedral minimal surfaces, Heegaard splittings and decision problems for $3$–dimensional manifolds, from: "Geometric topology (Athens, GA, 1993)" (editor W H Kazez), AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 1

[19] M Scharlemann, Local detection of strongly irreducible Heegaard splittings, Topology Appl. 90 (1998) 135

[20] M Scharlemann, A Thompson, Thin position for $3$–manifolds, from: "Geometric topology (Haifa, 1992)" (editors C M Gordon, Y Moriah, B Wajnryb), Contemp. Math. 164, Amer. Math. Soc. (1994) 231

[21] M Stocking, Almost normal surfaces in $3$–manifolds, Trans. Amer. Math. Soc. 352 (2000) 171

[22] A Thompson, Thin position and the recognition problem for $S^3$, Math. Res. Lett. 1 (1994) 613

[23] F Waldhausen, On irreducible $3$–manifolds which are sufficiently large, Ann. of Math. $(2)$ 87 (1968) 56

Cité par Sources :