Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove a Milnor–Wood inequality for representations of the fundamental group of a compact complex hyperbolic manifold in the group of isometries of quaternionic hyperbolic space. Of special interest is the case of equality, and its application to rigidity. We show that equality can only be achieved for totally geodesic representations, thereby establishing a global rigidity theorem for totally geodesic representations.
García-Prada, Oscar 1 ; Toledo, Domingo 2
@article{GT_2011_15_2_a10, author = {Garc{\'\i}a-Prada, Oscar and Toledo, Domingo}, title = {A {Milnor{\textendash}Wood} inequality for complex hyperbolic lattices in quaternionic space}, journal = {Geometry & topology}, pages = {1013--1027}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2011}, doi = {10.2140/gt.2011.15.1013}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1013/} }
TY - JOUR AU - García-Prada, Oscar AU - Toledo, Domingo TI - A Milnor–Wood inequality for complex hyperbolic lattices in quaternionic space JO - Geometry & topology PY - 2011 SP - 1013 EP - 1027 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1013/ DO - 10.2140/gt.2011.15.1013 ID - GT_2011_15_2_a10 ER -
%0 Journal Article %A García-Prada, Oscar %A Toledo, Domingo %T A Milnor–Wood inequality for complex hyperbolic lattices in quaternionic space %J Geometry & topology %D 2011 %P 1013-1027 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1013/ %R 10.2140/gt.2011.15.1013 %F GT_2011_15_2_a10
García-Prada, Oscar; Toledo, Domingo. A Milnor–Wood inequality for complex hyperbolic lattices in quaternionic space. Geometry & topology, Tome 15 (2011) no. 2, pp. 1013-1027. doi : 10.2140/gt.2011.15.1013. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1013/
[1] Manifolds all of whose geodesics are closed, Ergebnisse der Math. und ihrer Grenzgebiete 93, Springer (1978)
,[2] Inégalités de Milnor–Wood géométriques, Comment. Math. Helv. 82 (2007) 753
, , ,[3] Surface group representations and $\mathrm{U}(p,q)$–Higgs bundles, J. Differential Geom. 64 (2003) 111
, , ,[4] Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces, Geom. Dedicata 122 (2006) 185
, , ,[5] Milnor–Wood inequalities for manifolds locally isometric to a product of hyperbolic planes, C. R. Math. Acad. Sci. Paris 346 (2008) 661
, ,[6] Surface group representations with maximal Toledo invariant, Ann. of Math. $(2)$ 172 (2010) 517
, , ,[7] Period mappings and period domains, Cambridge Studies in Advanced Math. 85, Cambridge Univ. Press (2003)
, , ,[8] Harmonic mappings of Kähler manifolds to locally symmetric spaces, Inst. Hautes Études Sci. Publ. Math. (1989) 173
, ,[9] Hyperbolic spaces, from: "Contributions to analysis (a collection of papers dedicated to Lipman Bers)" (editors L V Ahlfors, I Kra, B Maskit, L Nirenberg), Academic Press (1974) 49
, ,[10] Flat $G$–bundles with canonical metrics, J. Differential Geom. 28 (1988) 361
,[11] Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. $(3)$ 55 (1987) 127
,[12] Higgs bundles and surface group representations in the real symplectic group
, , ,[13] Local rigidity of discrete groups acting on complex hyperbolic space, Invent. Math. 88 (1987) 495
, ,[14] Locally homogeneous complex manifolds, Acta Math. 123 (1969) 253
, ,[15] Local rigidity in quaternionic hyperbolic space, J. Eur. Math. Soc. $($JEMS$)$ 11 (2009) 1141
, ,[16] Local quaternionic rigidity for complex hyperbolic lattices
, , ,[17] Local rigidity for complex hyperbolic lattices and Hodge theory, preprint, to appear in Invent. Math. (2009)
,[18] Hyperbolic manifolds and holomorphic mappings, Pure and Applied Math. 2, Marcel Dekker (1970)
,[19] Foundations of differential geometry. Vol. II, Interscience Tracts in Pure and Applied Math. 15, Wiley Interscience (1969)
, ,[20] Representations of complex hyperbolic lattices into rank $2$ classical Lie groups of Hermitian type, Geom. Dedicata 137 (2008) 85
, ,[21] The Toledo invariant on smooth varieties of general type, J. Reine Angew. Math. 649 (2010) 207
, ,[22] On the existence of a connection with curvature zero, Comment. Math. Helv. 32 (1958) 215
,[23] Representations of surface groups in complex hyperbolic space, J. Differential Geom. 29 (1989) 125
,[24] Maps between complex hyperbolic surfaces, Geom. Dedicata 97 (2003) 115
,[25] Bundles with totally disconnected structure group, Comment. Math. Helv. 46 (1971) 257
,Cité par Sources :