Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We exhibit an infinite family of Zariski dense surface groups of fixed genus inside .
Long, Darren D 1 ; Reid, Alan W 2 ; Thistlethwaite, Morwen 3
@article{GT_2011_15_1_a0, author = {Long, Darren~D and Reid, Alan~W and Thistlethwaite, Morwen}, title = {Zariski dense surface subgroups in {SL(3,Z)}}, journal = {Geometry & topology}, pages = {1--9}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2011}, doi = {10.2140/gt.2011.15.1}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1/} }
TY - JOUR AU - Long, Darren D AU - Reid, Alan W AU - Thistlethwaite, Morwen TI - Zariski dense surface subgroups in SL(3,Z) JO - Geometry & topology PY - 2011 SP - 1 EP - 9 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1/ DO - 10.2140/gt.2011.15.1 ID - GT_2011_15_1_a0 ER -
Long, Darren D; Reid, Alan W; Thistlethwaite, Morwen. Zariski dense surface subgroups in SL(3,Z). Geometry & topology, Tome 15 (2011) no. 1, pp. 1-9. doi : 10.2140/gt.2011.15.1. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1/
[1] Groups of integral representation type, Pacific J. Math. 86 (1980) 15
,[2] Atoroidal surface bundles over surfaces, Geom. Funct. Anal. 19 (2009) 943
,[3] The deformation spaces of convex $\mathbb{RP}^2$–structures on $2$–orbifolds, Amer. J. Math. 127 (2005) 1019
, ,[4] Computing varieties of representations of hyperbolic $3$–manifolds into $\mathrm{SL}(4,\mathbb R)$, Experiment. Math. 15 (2006) 291
, , ,[5] Convex real projective structures on compact surfaces, J. Differential Geom. 31 (1990) 791
,[6] Small subgroups of $\mathrm{SL}(3,\mathbf{Z})$, to appear in Experiment. Math.
, ,[7] Maximal orders, London Math. Soc. Monogr. New Ser. 28, The Clarendon Press, Oxford Univ. Press (2003)
,[8] Trees, Springer (1980)
,[9] Free subgroups in linear groups, J. Algebra 20 (1972) 250
,[10] Quasi-homogeneous cones, Mat. Zametki 1 (1967) 347
, ,[11] Representations of surface groups and right-angled Artin groups in higher rank, Algebr. Geom. Topol. 7 (2007) 1099
,Cité par Sources :