Zariski dense surface subgroups in SL(3,Z)
Geometry & topology, Tome 15 (2011) no. 1, pp. 1-9.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We exhibit an infinite family of Zariski dense surface groups of fixed genus inside SL(3,Z).

DOI : 10.2140/gt.2011.15.1
Classification : 22E40, 20H10
Keywords: Zariski dense, surface subgroup

Long, Darren D 1 ; Reid, Alan W 2 ; Thistlethwaite, Morwen 3

1 Department of Mathematics, University of California, Santa Barbara, Santa Barbara CA 93106, USA
2 Department of Mathematics, University of Texas, Austin TX 78712, USA
3 Department of Mathematics, University of Tennessee, Knoxville TN 37996, USA
@article{GT_2011_15_1_a0,
     author = {Long, Darren~D and Reid, Alan~W and Thistlethwaite, Morwen},
     title = {Zariski dense surface subgroups in {SL(3,Z)}},
     journal = {Geometry & topology},
     pages = {1--9},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2011},
     doi = {10.2140/gt.2011.15.1},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1/}
}
TY  - JOUR
AU  - Long, Darren D
AU  - Reid, Alan W
AU  - Thistlethwaite, Morwen
TI  - Zariski dense surface subgroups in SL(3,Z)
JO  - Geometry & topology
PY  - 2011
SP  - 1
EP  - 9
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1/
DO  - 10.2140/gt.2011.15.1
ID  - GT_2011_15_1_a0
ER  - 
%0 Journal Article
%A Long, Darren D
%A Reid, Alan W
%A Thistlethwaite, Morwen
%T Zariski dense surface subgroups in SL(3,Z)
%J Geometry & topology
%D 2011
%P 1-9
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1/
%R 10.2140/gt.2011.15.1
%F GT_2011_15_1_a0
Long, Darren D; Reid, Alan W; Thistlethwaite, Morwen. Zariski dense surface subgroups in SL(3,Z). Geometry & topology, Tome 15 (2011) no. 1, pp. 1-9. doi : 10.2140/gt.2011.15.1. http://geodesic.mathdoc.fr/articles/10.2140/gt.2011.15.1/

[1] H Bass, Groups of integral representation type, Pacific J. Math. 86 (1980) 15

[2] B H Bowditch, Atoroidal surface bundles over surfaces, Geom. Funct. Anal. 19 (2009) 943

[3] S Choi, W M Goldman, The deformation spaces of convex $\mathbb{RP}^2$–structures on $2$–orbifolds, Amer. J. Math. 127 (2005) 1019

[4] D Cooper, D D Long, M Thistlethwaite, Computing varieties of representations of hyperbolic $3$–manifolds into $\mathrm{SL}(4,\mathbb R)$, Experiment. Math. 15 (2006) 291

[5] W M Goldman, Convex real projective structures on compact surfaces, J. Differential Geom. 31 (1990) 791

[6] D D Long, A W Reid, Small subgroups of $\mathrm{SL}(3,\mathbf{Z})$, to appear in Experiment. Math.

[7] I Reiner, Maximal orders, London Math. Soc. Monogr. New Ser. 28, The Clarendon Press, Oxford Univ. Press (2003)

[8] J P Serre, Trees, Springer (1980)

[9] J Tits, Free subgroups in linear groups, J. Algebra 20 (1972) 250

[10] E B Vinberg, V G Kac, Quasi-homogeneous cones, Mat. Zametki 1 (1967) 347

[11] S Wang, Representations of surface groups and right-angled Artin groups in higher rank, Algebr. Geom. Topol. 7 (2007) 1099

Cité par Sources :