Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a proper submersion with a Riemannian structure. Given a differential –theory class on , we define its analytic and topological indices as differential –theory classes on . We prove that the two indices are the same.
Freed, Daniel S 1 ; Lott, John 2
@article{GT_2010_14_2_a6, author = {Freed, Daniel S and Lott, John}, title = {An index theorem in differential {K{\textendash}theory}}, journal = {Geometry & topology}, pages = {903--966}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2010}, doi = {10.2140/gt.2010.14.903}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.903/} }
Freed, Daniel S; Lott, John. An index theorem in differential K–theory. Geometry & topology, Tome 14 (2010) no. 2, pp. 903-966. doi : 10.2140/gt.2010.14.903. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.903/
[1] Riemann–Roch theorems for differentiable manifolds, Bull. Amer. Math. Soc. 65 (1959) 276
, ,[2] Vector bundles and homogeneous spaces, from: "Proc. Sympos. Pure Math., Vol. III", Amer. Math. Soc. (1961) 7
, ,[3] Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43
, , ,[4] Spectral asymmetry and Riemannian geometry. III, Math. Proc. Cambridge Philos. Soc. 79 (1976) 71
, , ,[5] Equivariant $K$–theory and completion, J. Differential Geometry 3 (1969) 1
, ,[6] The index of elliptic operators on compact manifolds, Bull. Amer. Math. Soc. 69 (1963) 422
, ,[7] The index of elliptic operators. IV, Ann. of Math. $(2)$ 93 (1971) 119
, ,[8] $K$ homology and index theory, from: "Operator algebras and applications, Part I (Kingston, Ont., 1980)" (editor R V Kadison), Proc. Sympos. Pure Math. 38, Amer. Math. Soc. (1982) 117
, ,[9] Heat kernels and Dirac operators, Grundlehren Text Editions, Springer (2004)
, , ,[10] The Atiyah–Singer index theorem for families of Dirac operators: two heat equation proofs, Invent. Math. 83 (1985) 91
,[11] $\eta$–invariants and their adiabatic limits, J. Amer. Math. Soc. 2 (1989) 33
, ,[12] The analysis of elliptic families. II. Dirac operators, eta invariants, and the holonomy theorem, Comm. Math. Phys. 107 (1986) 103
, ,[13] Real embeddings and eta invariants, Math. Ann. 295 (1993) 661
, ,[14] A geometric description of smooth cohomology
, , ,[15] Smooth $K$–theory, to appear in Astérisque
, ,[16] Differential characters and geometric invariants, from: "Geometry and topology (College Park, Md., 1983/84)" (editors J Alexander, J Harer), Lecture Notes in Math. 1167, Springer (1985) 50
, ,[17] Adiabatic limits, nonmultiplicativity of signature, and Leray spectral sequence, J. Amer. Math. Soc. 4 (1991) 265
,[18] Lectures on the arithmetic Riemann–Roch theorem, Annals of Math. Studies 127, Princeton Univ. Press (1992)
,[19] On determinant line bundles, from: "Mathematical aspects of string theory (San Diego, Calif., 1986)" (editor S T Yau), Adv. Ser. Math. Phys. 1, World Sci. Publishing (1987) 189
,[20] Dirac charge quantization and generalized differential cohomology, from: "Surveys in differential geometry" (editor S T Yau), Surv. Differ. Geom. VII, Int. Press (2000) 129
,[21] Pions and generalized cohomology, J. Differential Geom. 80 (2008) 45
,[22] On Ramond–Ramond fields and $K$–theory, J. High Energy Phys. (2000) 14
, ,[23] An arithmetic Riemann–Roch theorem in higher degrees, Ann. Inst. Fourier (Grenoble) 58 (2008) 2169
, , ,[24] Characteristic classes for algebraic vector bundles with Hermitian metric. II, Ann. of Math. $(2)$ 131 (1990) 205
, ,[25] Algebraic topology, Cambridge Univ. Press (2002)
,[26] Topological methods in algebraic geometry, Classics in Math., Springer (1995)
,[27] Spin cobordism determines real $K$–theory, Math. Z. 210 (1992) 181
, ,[28] Quadratic functions in geometry, topology, and $M$–theory, J. Differential Geom. 70 (2005) 329
, ,[29] The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis, Classics in Math., Springer (2003)
,[30] $K$–théorie multiplicative et homologie cyclique, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986) 507
,[31] Homologie cyclique et $K$–théorie, Astérisque 149, Soc. Math. France (1987) 147
,[32] An index theorem in differential $K$–theory, PhD thesis, University of Texas (2008)
,[33] $\mathbf{R}/\mathbf{Z}$ index theory, Comm. Anal. Geom. 2 (1994) 279
,[34] Secondary analytic indices, from: "Regulators in analysis, geometry and number theory" (editors A Reznikov, N Schappacher), Progr. Math. 171, Birkhäuser (2000) 231
,[35] Higher-degree analogs of the determinant line bundle, Comm. Math. Phys. 230 (2002) 41
,[36] A concise course in algebraic topology, Chicago Lectures in Math., Univ. of Chicago Press (1999)
,[37] Families of Dirac operators, boundaries and the $b$–calculus, J. Differential Geom. 46 (1997) 99
, ,[38] Characteristic classes, Annals of Math. Studies 76, Princeton Univ. Press (1974)
, ,[39] The index of elliptic operators over $C^* $–algebras, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979) 831, 967
, ,[40] Differential equivariant $K$–theory
,[41] Determinants of Cauchy–Riemann operators on Riemann surfaces, Funktsional. Anal. i Prilozhen. 19 (1985) 37, 96
,[42] Superconnections and the Chern character, Topology 24 (1985) 89
,[43] Structured vector bundles define differential $K$–theory
, ,[44] An introduction to homological algebra, Cambridge Studies in Advanced Math. 38, Cambridge Univ. Press (1994)
,[45] Universal coefficient sequences for cohomology theories of $\mathrm{CW}$–spectra, Osaka J. Math. 12 (1975) 305
,Cité par Sources :