Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We generalize Lagrangian Floer cohomology to sequences of Lagrangian correspondences. For sequences related by the geometric composition of Lagrangian correspondences we establish an isomorphism of the Floer cohomologies. This provides the foundation for the construction of a symplectic –category as well as for the definition of topological invariants via decomposition and representation in the symplectic category. Here we give some first direct symplectic applications: Calculations of Floer cohomology, displaceability of Lagrangian correspondences and transfer of displaceability under geometric composition.
Wehrheim, Katrin 1 ; Woodward, Chris T 2
@article{GT_2010_14_2_a5, author = {Wehrheim, Katrin and Woodward, Chris T}, title = {Quilted {Floer} cohomology}, journal = {Geometry & topology}, pages = {833--902}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2010}, doi = {10.2140/gt.2010.14.833}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.833/} }
Wehrheim, Katrin; Woodward, Chris T. Quilted Floer cohomology. Geometry & topology, Tome 14 (2010) no. 2, pp. 833-902. doi : 10.2140/gt.2010.14.833. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.833/
[1] Homological symmetry for the four-torus
, ,[2] Lagrangian Floer homology of the Clifford torus and real projective space in odd dimensions
,[3] Calabi quasimorphisms for the symplectic ball, Commun. Contemp. Math. 6 (2004) 793
, , ,[4] Holomorphic discs, spin structures, and Floer cohomology of the Clifford torus, Int. Math. Res. Not. (2004) 1803
,[5] Floer homology groups in Yang–Mills theory, Cambridge Tracts in Math. 147, Cambridge Univ. Press (2002)
,[6] Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988) 513
,[7] A relative Morse index for the symplectic action, Comm. Pure Appl. Math. 41 (1988) 393
,[8] The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math. 41 (1988) 775
,[9] Transversality in elliptic Morse theory for the symplectic action, Duke Math. J. 80 (1995) 251
, , ,[10] Lagrangian intersection Floer theory-anomaly and obstruction, Preprint
, , , ,[11] Gromov–Witten invariants of symplectic quotients and adiabatic limits, J. Symplectic Geom. 3 (2005) 55
, ,[12] The moment map revisited, J. Differential Geom. 69 (2005) 137
, ,[13] Cohomology of quotients in symplectic and algebraic geometry, Math. Notes 31, Princeton Univ. Press (1984)
,[14] Knot homology groups from instantons
, ,[15] Structure of the image of (pseudo)-holomorphic discs with totally real boundary condition, Comm. Anal. Geom. 8 (2000) 31
, ,[16] Heegaard Floer homology of broken fibrations over the circle
,[17] Elliptic differential operators on noncompact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. $(4)$ 12 (1985) 409
, ,[18] $J$–holomorphic curves and symplectic topology, Amer. Math. Soc. Coll. Publ. 52, Amer. Math. Soc. (2004)
, ,[19] Canonical bundles for Hamiltonian loop group manifolds, Pacific J. Math. 198 (2001) 477
, ,[20] Floer homology and symplectic topology, in preparation
,[21] Removal of boundary singularities of pseudo-holomorphic curves with Lagrangian boundary conditions, Comm. Pure Appl. Math. 45 (1992) 121
,[22] Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I, Comm. Pure Appl. Math. 46 (1993) 949
,[23] On the structure of pseudo-holomorphic discs with totally real boundary conditions, J. Geom. Anal. 7 (1997) 305
,[24] A symplectic Gysin sequence
,[25] Lagrangian matching invariants for fibred four-manifolds. I, Geom. Topol. 11 (2007) 759
,[26] Seidel–Smith cohomology for tangles, Selecta Math. $($N.S.$)$ 15 (2009) 487
,[27] The Maslov index for paths, Topology 32 (1993) 827
, ,[28] Real analysis, Macmillan (1988)
,[29] Lectures on Floer homology, from: "Symplectic geometry and topology (Park City, UT, 1997)" (editors Y Eliashberg, L Traynor), IAS/Park City Math. Ser. 7, Amer. Math. Soc. (1999) 143
,[30] Cohomology operations from $S^1$–cobordisms in Floer homology, PhD thesis, ETH Zürich (1995)
,[31] Graded Lagrangian submanifolds, Bull. Soc. Math. France 128 (2000) 103
,[32] A long exact sequence for symplectic Floer cohomology, Topology 42 (2003) 1003
,[33] Fukaya categories and Picard–Lefschetz theory, Zurich Lectures in Advanced Math., European Math. Soc. (2008)
,[34] Lectures on four-dimensional Dehn twists, from: "Symplectic $4$–manifolds and algebraic surfaces" (editors F Catanese, G Tian), Lecture Notes in Math. 1938, Springer (2008) 231
,[35] Algebraic topology, Springer (1981)
,[36] Intersection de sous-variétés lagrangiennes, fonctionnelles d'action et indice des systèmes hamiltoniens, Bull. Soc. Math. France 115 (1987) 361
,[37] Lagrangian boundary conditions for anti-self-dual instantons and the Atiyah-Floer conjecture, J. Symplectic Geom. 3 (2005) 703
,[38] Floer cohomology and geometric composition of Lagrangian correspondences
, ,[39] Functoriality for Lagrangian correspondences in Floer theory
, ,[40] Orientations for pseudoholomorphic quilts, in preparation
, ,[41] Pseudoholomorphic quilts
, ,[42] Floer field theory, Preprint (2008)
, ,[43] Floer field theory for tangles, Preprint (2008)
, ,[44] Lectures on symplectic manifolds, CBMS Regional Conference Ser. in Math. 29, Amer. Math. Soc. (1979)
,[45] The symplectic “category”, from: "Differential geometric methods in mathematical physics (Clausthal, 1980)" (editors P García, L A Pérez-Rendón, J M Souriau), Lecture Notes in Math. 905, Springer (1982) 45
,Cité par Sources :