Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
For a proper scheme with a fixed –perfect obstruction theory , we define virtual versions of holomorphic Euler characteristic, –genus and elliptic genus; they are deformation invariant and extend the usual definition in the smooth case. We prove virtual versions of the Grothendieck–Riemann–Roch and Hirzebruch–Riemann–Roch theorems. We show that the virtual –genus is a polynomial and use this to define a virtual topological Euler characteristic. We prove that the virtual elliptic genus satisfies a Jacobi modularity property; we state and prove a localization theorem in the toric equivariant case. We show how some of our results apply to moduli spaces of stable sheaves.
Fantechi, Barbara 1 ; Göttsche, Lothar 2
@article{GT_2010_14_1_a1, author = {Fantechi, Barbara and G\"ottsche, Lothar}, title = {Riemann{\textendash}Roch theorems and elliptic genus for virtually smooth schemes}, journal = {Geometry & topology}, pages = {83--115}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2010}, doi = {10.2140/gt.2010.14.83}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.83/} }
TY - JOUR AU - Fantechi, Barbara AU - Göttsche, Lothar TI - Riemann–Roch theorems and elliptic genus for virtually smooth schemes JO - Geometry & topology PY - 2010 SP - 83 EP - 115 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.83/ DO - 10.2140/gt.2010.14.83 ID - GT_2010_14_1_a1 ER -
%0 Journal Article %A Fantechi, Barbara %A Göttsche, Lothar %T Riemann–Roch theorems and elliptic genus for virtually smooth schemes %J Geometry & topology %D 2010 %P 83-115 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.83/ %R 10.2140/gt.2010.14.83 %F GT_2010_14_1_a1
Fantechi, Barbara; Göttsche, Lothar. Riemann–Roch theorems and elliptic genus for virtually smooth schemes. Geometry & topology, Tome 14 (2010) no. 1, pp. 83-115. doi : 10.2140/gt.2010.14.83. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.83/
[1] Chern classes for singular hypersurfaces, Trans. Amer. Math. Soc. 351 (1999) 3989
,[2] The intrinsic normal cone, Invent. Math. 128 (1997) 45
, ,[3] Elliptic genera of toric varieties and applications to mirror symmetry, Invent. Math. 140 (2000) 453
, ,[4] Elliptic functions, Grund. der Math. Wissenschaften 281, Springer (1985)
,[5] Derived Quot schemes, Ann. Sci. École Norm. Sup. $(4)$ 34 (2001) 403
, ,[6] Derived Hilbert schemes, J. Amer. Math. Soc. 15 (2002) 787
, ,[7] Virtual fundamental classes via dg-manifolds, Geom. Topol. 13 (2009) 1779
, ,[8] Split states, entropy enigmas, holes and halos
, ,[9] Intersection theory, Ergebnisse Series 3: 2, Springer (1998)
,[10] Change of polarization and Hodge numbers of moduli spaces of torsion free sheaves on surfaces, Math. Z. 223 (1996) 247
,[11]
, , , , in preparation[12] $K$–theoretic Donaldson invariants via instanton counting, Pure Appl. Math. Quarterly 5 (2009) 1029
, , ,[13] Localization of virtual classes, Invent. Math. 135 (1999) 487
, ,[14] Algebraic geometry, Graduate Texts in Math. 5252, Springer (1977)
,[15] Komplexe elliptische Geschlechter und $S^1$–äquivariante Kobordismustheorie, Diplomarbeit, Universität Bonn (1991)
,[16] Riemann–Roch for algebraic stacks III. virtual structure sheaves and virtual fundamental classes, Preprint (2005)
,[17] Bredon-style homology, cohomology and Riemann–Roch for algebraic stacks, Adv. Math. 209 (2007) 1
,[18] Enumeration of rational curves via torus actions, from: "The moduli space of curves (Texel Island, 1994)" (editors R Dijkgraaf, C Faber, G van der Geer), Progr. Math. 129, Birkhäuser (1995) 335
,[19] On the geometry of Deligne-Mumford stacks, from: "Algebraic geometry—Seattle 2005. Part 1" (editors D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 259
,[20] Generalized elliptic genera and Baker–Akhiezer functions, Mat. Zametki 47 (1990) 34, 158
,[21] Quantum $K$–theory. I. Foundations, Duke Math. J. 121 (2004) 389
,[22] Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998) 119
, ,[23] Note on the transition of $K$–theory invariants, Preprint (2007)
,[24] Donaldson type invariants for algebraic surfaces. Transition of moduli stacks, Lecture Notes in Math. 1972, Springer (2009)
,[25] A strong coupling test of $S$–duality, Nuclear Phys. B 431 (1994) 3
, ,Cité par Sources :