Riemann–Roch theorems and elliptic genus for virtually smooth schemes
Geometry & topology, Tome 14 (2010) no. 1, pp. 83-115.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

For a proper scheme X with a fixed 1–perfect obstruction theory E, we define virtual versions of holomorphic Euler characteristic, χy–genus and elliptic genus; they are deformation invariant and extend the usual definition in the smooth case. We prove virtual versions of the Grothendieck–Riemann–Roch and Hirzebruch–Riemann–Roch theorems. We show that the virtual χy–genus is a polynomial and use this to define a virtual topological Euler characteristic. We prove that the virtual elliptic genus satisfies a Jacobi modularity property; we state and prove a localization theorem in the toric equivariant case. We show how some of our results apply to moduli spaces of stable sheaves.

DOI : 10.2140/gt.2010.14.83
Keywords: Riemann–Roch theorems, virtual fundamental class, genus

Fantechi, Barbara 1 ; Göttsche, Lothar 2

1 SISSA, Via Beirut 2/4, 34151 Trieste, Italy
2 International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
@article{GT_2010_14_1_a1,
     author = {Fantechi, Barbara and G\"ottsche, Lothar},
     title = {Riemann{\textendash}Roch theorems and elliptic genus for virtually smooth schemes},
     journal = {Geometry & topology},
     pages = {83--115},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2010},
     doi = {10.2140/gt.2010.14.83},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.83/}
}
TY  - JOUR
AU  - Fantechi, Barbara
AU  - Göttsche, Lothar
TI  - Riemann–Roch theorems and elliptic genus for virtually smooth schemes
JO  - Geometry & topology
PY  - 2010
SP  - 83
EP  - 115
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.83/
DO  - 10.2140/gt.2010.14.83
ID  - GT_2010_14_1_a1
ER  - 
%0 Journal Article
%A Fantechi, Barbara
%A Göttsche, Lothar
%T Riemann–Roch theorems and elliptic genus for virtually smooth schemes
%J Geometry & topology
%D 2010
%P 83-115
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.83/
%R 10.2140/gt.2010.14.83
%F GT_2010_14_1_a1
Fantechi, Barbara; Göttsche, Lothar. Riemann–Roch theorems and elliptic genus for virtually smooth schemes. Geometry & topology, Tome 14 (2010) no. 1, pp. 83-115. doi : 10.2140/gt.2010.14.83. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.83/

[1] P Aluffi, Chern classes for singular hypersurfaces, Trans. Amer. Math. Soc. 351 (1999) 3989

[2] K Behrend, B Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997) 45

[3] L A Borisov, A Libgober, Elliptic genera of toric varieties and applications to mirror symmetry, Invent. Math. 140 (2000) 453

[4] K Chandrasekharan, Elliptic functions, Grund. der Math. Wissenschaften 281, Springer (1985)

[5] I Ciocan-Fontanine, M Kapranov, Derived Quot schemes, Ann. Sci. École Norm. Sup. $(4)$ 34 (2001) 403

[6] I Ciocan-Fontanine, M Kapranov, Derived Hilbert schemes, J. Amer. Math. Soc. 15 (2002) 787

[7] I Ciocan-Fontanine, M Kapranov, Virtual fundamental classes via dg-manifolds, Geom. Topol. 13 (2009) 1779

[8] F Denef, G Moore, Split states, entropy enigmas, holes and halos

[9] W Fulton, Intersection theory, Ergebnisse Series 3: 2, Springer (1998)

[10] L Göttsche, Change of polarization and Hodge numbers of moduli spaces of torsion free sheaves on surfaces, Math. Z. 223 (1996) 247

[11] L Göttsche, T Mochizuki, H Nakajima, K Yoshioka, in preparation

[12] L Göttsche, H Nakajima, K Yoshioka, $K$–theoretic Donaldson invariants via instanton counting, Pure Appl. Math. Quarterly 5 (2009) 1029

[13] T Graber, R Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999) 487

[14] R Hartshorne, Algebraic geometry, Graduate Texts in Math. 5252, Springer (1977)

[15] G Höhn, Komplexe elliptische Geschlechter und $S^1$–äquivariante Kobordismustheorie, Diplomarbeit, Universität Bonn (1991)

[16] R Joshua, Riemann–Roch for algebraic stacks III. virtual structure sheaves and virtual fundamental classes, Preprint (2005)

[17] R Joshua, Bredon-style homology, cohomology and Riemann–Roch for algebraic stacks, Adv. Math. 209 (2007) 1

[18] M Kontsevich, Enumeration of rational curves via torus actions, from: "The moduli space of curves (Texel Island, 1994)" (editors R Dijkgraaf, C Faber, G van der Geer), Progr. Math. 129, Birkhäuser (1995) 335

[19] A Kresch, On the geometry of Deligne-Mumford stacks, from: "Algebraic geometry—Seattle 2005. Part 1" (editors D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 259

[20] I M Krichever, Generalized elliptic genera and Baker–Akhiezer functions, Mat. Zametki 47 (1990) 34, 158

[21] Y P Lee, Quantum $K$–theory. I. Foundations, Duke Math. J. 121 (2004) 389

[22] J Li, G Tian, Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998) 119

[23] T Mochizuki, Note on the transition of $K$–theory invariants, Preprint (2007)

[24] T Mochizuki, Donaldson type invariants for algebraic surfaces. Transition of moduli stacks, Lecture Notes in Math. 1972, Springer (2009)

[25] C Vafa, E Witten, A strong coupling test of $S$–duality, Nuclear Phys. B 431 (1994) 3

Cité par Sources :