Hausdorff dimension and the Weil–Petersson extension to quasifuchsian space
Geometry & topology, Tome 14 (2010) no. 2, pp. 799-831.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We consider a natural nonnegative two-form G on quasifuchsian space that extends the Weil–Petersson metric on Teichmüller space. We describe completely the positive definite locus of G, showing that it is a positive definite metric off the fuchsian diagonal of quasifuchsian space and is only zero on the “pure-bending” tangent vectors to the fuchsian diagonal. We show that G is equal to the pullback of the pressure metric from dynamics. We use the properties of G to prove that at any critical point of the Hausdorff dimension function on quasifuchsian space the Hessian of the Hausdorff dimension function must be positive definite on at least a half-dimensional subspace of the tangent space. In particular this implies that Hausdorff dimension has no local maxima on quasifuchsian space.

DOI : 10.2140/gt.2010.14.799
Keywords: quasifuchsian space, Weil–Petersson metric, Hausdorff dimension

Bridgeman, Martin 1

1 Department of Mathematics, Boston College, Chestnut Hill, MA 02167
@article{GT_2010_14_2_a4,
     author = {Bridgeman, Martin},
     title = {Hausdorff dimension and the {Weil{\textendash}Petersson} extension to quasifuchsian space},
     journal = {Geometry & topology},
     pages = {799--831},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2010},
     doi = {10.2140/gt.2010.14.799},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.799/}
}
TY  - JOUR
AU  - Bridgeman, Martin
TI  - Hausdorff dimension and the Weil–Petersson extension to quasifuchsian space
JO  - Geometry & topology
PY  - 2010
SP  - 799
EP  - 831
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.799/
DO  - 10.2140/gt.2010.14.799
ID  - GT_2010_14_2_a4
ER  - 
%0 Journal Article
%A Bridgeman, Martin
%T Hausdorff dimension and the Weil–Petersson extension to quasifuchsian space
%J Geometry & topology
%D 2010
%P 799-831
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.799/
%R 10.2140/gt.2010.14.799
%F GT_2010_14_2_a4
Bridgeman, Martin. Hausdorff dimension and the Weil–Petersson extension to quasifuchsian space. Geometry & topology, Tome 14 (2010) no. 2, pp. 799-831. doi : 10.2140/gt.2010.14.799. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.799/

[1] L Bers, Simultaneous uniformization, Bull. Amer. Math. Soc. 66 (1960) 94

[2] F Bonahon, Shearing hyperbolic surfaces, bending pleated surfaces and Thurston's symplectic form, Ann. Fac. Sci. Toulouse Math. $(6)$ 5 (1996) 233

[3] R Bowen, Periodic orbits for hyperbolic flows, Amer. J. Math. 94 (1972) 1

[4] R Bowen, Hausdorff dimension of quasicircles, Inst. Hautes Études Sci. Publ. Math. (1979) 11

[5] M Bridgeman, E C Taylor, Patterson-Sullivan measures and quasi-conformal deformations, Comm. Anal. Geom. 13 (2005) 561

[6] M Bridgeman, E C Taylor, An extension of the Weil–Petersson metric to quasi-Fuchsian space, Math. Ann. 341 (2008) 927

[7] S P Kerckhoff, Earthquakes are analytic, Comment. Math. Helv. 60 (1985) 17

[8] A Livsic, Cohomology properties of dynamical systems, Math. USSR-Izv. 6 (1972)

[9] A Marden, The geometry of finitely generated kleinian groups, Ann. of Math. $(2)$ 99 (1974) 383

[10] B Maskit, Kleinian groups, Grund. der Math. Wissenschaften 287, Springer (1988)

[11] C T Mcmullen, Thermodynamics, dimension and the Weil–Petersson metric, Invent. Math. 173 (2008) 365

[12] P J Nicholls, The ergodic theory of discrete groups, London Math. Society Lecture Note Ser. 143, Cambridge Univ. Press (1989)

[13] W Parry, M Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187-188 (1990)

[14] D Ruelle, Repellers for real analytic maps, Ergodic Theory Dynamical Systems 2 (1982) 99

[15] K Sigmund, On dynamical systems with the specification property, Trans. Amer. Math. Soc. 190 (1974) 285

[16] D Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. (1979) 171

[17] D Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984) 259

[18] W P Thurston, The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Lecture Notes (1979)

[19] S A Wolpert, Thurston's Riemannian metric for Teichmüller space, J. Differential Geom. 23 (1986) 143

Cité par Sources :