Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We consider a natural nonnegative two-form on quasifuchsian space that extends the Weil–Petersson metric on Teichmüller space. We describe completely the positive definite locus of , showing that it is a positive definite metric off the fuchsian diagonal of quasifuchsian space and is only zero on the “pure-bending” tangent vectors to the fuchsian diagonal. We show that is equal to the pullback of the pressure metric from dynamics. We use the properties of to prove that at any critical point of the Hausdorff dimension function on quasifuchsian space the Hessian of the Hausdorff dimension function must be positive definite on at least a half-dimensional subspace of the tangent space. In particular this implies that Hausdorff dimension has no local maxima on quasifuchsian space.
Bridgeman, Martin 1
@article{GT_2010_14_2_a4, author = {Bridgeman, Martin}, title = {Hausdorff dimension and the {Weil{\textendash}Petersson} extension to quasifuchsian space}, journal = {Geometry & topology}, pages = {799--831}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2010}, doi = {10.2140/gt.2010.14.799}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.799/} }
TY - JOUR AU - Bridgeman, Martin TI - Hausdorff dimension and the Weil–Petersson extension to quasifuchsian space JO - Geometry & topology PY - 2010 SP - 799 EP - 831 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.799/ DO - 10.2140/gt.2010.14.799 ID - GT_2010_14_2_a4 ER -
Bridgeman, Martin. Hausdorff dimension and the Weil–Petersson extension to quasifuchsian space. Geometry & topology, Tome 14 (2010) no. 2, pp. 799-831. doi : 10.2140/gt.2010.14.799. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.799/
[1] Simultaneous uniformization, Bull. Amer. Math. Soc. 66 (1960) 94
,[2] Shearing hyperbolic surfaces, bending pleated surfaces and Thurston's symplectic form, Ann. Fac. Sci. Toulouse Math. $(6)$ 5 (1996) 233
,[3] Periodic orbits for hyperbolic flows, Amer. J. Math. 94 (1972) 1
,[4] Hausdorff dimension of quasicircles, Inst. Hautes Études Sci. Publ. Math. (1979) 11
,[5] Patterson-Sullivan measures and quasi-conformal deformations, Comm. Anal. Geom. 13 (2005) 561
, ,[6] An extension of the Weil–Petersson metric to quasi-Fuchsian space, Math. Ann. 341 (2008) 927
, ,[7] Earthquakes are analytic, Comment. Math. Helv. 60 (1985) 17
,[8] Cohomology properties of dynamical systems, Math. USSR-Izv. 6 (1972)
,[9] The geometry of finitely generated kleinian groups, Ann. of Math. $(2)$ 99 (1974) 383
,[10] Kleinian groups, Grund. der Math. Wissenschaften 287, Springer (1988)
,[11] Thermodynamics, dimension and the Weil–Petersson metric, Invent. Math. 173 (2008) 365
,[12] The ergodic theory of discrete groups, London Math. Society Lecture Note Ser. 143, Cambridge Univ. Press (1989)
,[13] Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187-188 (1990)
, ,[14] Repellers for real analytic maps, Ergodic Theory Dynamical Systems 2 (1982) 99
,[15] On dynamical systems with the specification property, Trans. Amer. Math. Soc. 190 (1974) 285
,[16] The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. (1979) 171
,[17] Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984) 259
,[18] The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Lecture Notes (1979)
,[19] Thurston's Riemannian metric for Teichmüller space, J. Differential Geom. 23 (1986) 143
,Cité par Sources :