Quasisymmetric nonparametrization and spaces associated with the Whitehead continuum
Geometry & topology, Tome 14 (2010) no. 2, pp. 773-798.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The decomposition space R3Wh associated with the Whitehead continuum Wh is not a manifold, but the product (R3Wh) ×Rm is homeomorphic to R3+m for any m 1 (known since the 1960’s). We study the quasisymmetric structure on (R3Wh) ×Rm and show that the space (R3Wh) ×Rm may be equipped with a metric resembling R3+m geometrically and measure theoretically—it is linearly locally contractible and Ahlfors (3+m)–regular—nevertheless the resulting space does not admit a quasisymmetric parametrization by R3+m.

DOI : 10.2140/gt.2010.14.773
Keywords: Whitehead continuum, decomposition space, quasisymmetric parametrization, quasisymmetric map

Heinonen, Juha 1 ; Wu, Jang-Mei 2

1 Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI 48109-1043, USA
2 Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL 61822, USA
@article{GT_2010_14_2_a3,
     author = {Heinonen, Juha and Wu, Jang-Mei},
     title = {Quasisymmetric nonparametrization and spaces associated with the {Whitehead} continuum},
     journal = {Geometry & topology},
     pages = {773--798},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2010},
     doi = {10.2140/gt.2010.14.773},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.773/}
}
TY  - JOUR
AU  - Heinonen, Juha
AU  - Wu, Jang-Mei
TI  - Quasisymmetric nonparametrization and spaces associated with the Whitehead continuum
JO  - Geometry & topology
PY  - 2010
SP  - 773
EP  - 798
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.773/
DO  - 10.2140/gt.2010.14.773
ID  - GT_2010_14_2_a3
ER  - 
%0 Journal Article
%A Heinonen, Juha
%A Wu, Jang-Mei
%T Quasisymmetric nonparametrization and spaces associated with the Whitehead continuum
%J Geometry & topology
%D 2010
%P 773-798
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.773/
%R 10.2140/gt.2010.14.773
%F GT_2010_14_2_a3
Heinonen, Juha; Wu, Jang-Mei. Quasisymmetric nonparametrization and spaces associated with the Whitehead continuum. Geometry & topology, Tome 14 (2010) no. 2, pp. 773-798. doi : 10.2140/gt.2010.14.773. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.773/

[1] L Ahlfors, A Beurling, Conformal invariants and function-theoretic null-sets, Acta Math. 83 (1950) 101

[2] F D Ancel, J W Cannon, The locally flat approximation of cell-like embedding relations, Ann. of Math. $(2)$ 109 (1979) 61

[3] J J Andrews, L Rubin, Some spaces whose product with $E^{1}$ is $E^{4}$, Bull. Amer. Math. Soc. 71 (1965) 675

[4] R H Bing, The cartesian product of a certain nonmanifold and a line is $E^{4}$, Ann. of Math. $(2)$ 70 (1959) 399

[5] R H Bing, A set is a $3$ cell if its cartesian product with an arc is a $4$ cell, Proc. Amer. Math. Soc. 12 (1961) 13

[6] M Bonk, B Kleiner, Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math. 150 (2002) 127

[7] J W Cannon, The recognition problem: what is a topological manifold?, Bull. Amer. Math. Soc. 84 (1978) 832

[8] A V Černavskiĭ, Piece-wise linear approximation of embeddings of manifolds in codimensions greater than two. A supplement to the article “Piece-wise linear approximation of embeddings of cells and spheres in codimensions greater than two”, Mat. Sb. $($N.S.$)$ 82 (124) (1970) 499

[9] R J Daverman, Decompositions of manifolds, Pure and Applied Math. 124, Academic Press (1986)

[10] G David, S Semmes, Quantitative rectifiability and Lipschitz mappings, Trans. Amer. Math. Soc. 337 (1993) 855

[11] R D Edwards, Suspensions of homology spheres

[12] R D Edwards, The topology of manifolds and cell-like maps, from: "Proceedings of the International Congress of Mathematicians (Helsinki, 1978)", Acad. Sci. Fennica (1980) 111

[13] H Federer, Geometric measure theory, Grund. der math. Wissenschaften 153, Springer (1969)

[14] M H Freedman, R Skora, Strange actions of groups on spheres, J. Differential Geom. 25 (1987) 75

[15] B Fuglede, Extremal length and functional completion, Acta Math. 98 (1957) 171

[16] F W Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962) 353

[17] F W Gehring, The $L^{p}$–integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973) 265

[18] J Heinonen, P Koskela, Definitions of quasiconformality, Invent. Math. 120 (1995) 61

[19] J Heinonen, P Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998) 1

[20] J Heinonen, S Semmes, Thirty-three yes or no questions about mappings, measures, and metrics, Conform. Geom. Dyn. 1 (1997) 1

[21] R C Kirby, The topology of $4$–manifolds, Lecture Notes in Math. 1374, Springer (1989)

[22] T J Laakso, Plane with $A_\infty$–weighted metric not bi-Lipschitz embeddable to $\mathbb{R}^N$, Bull. London Math. Soc. 34 (2002) 667

[23] O Martio, S Rickman, J Väisälä, Topological and metric properties of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I (1971) 31

[24] R T Miller, Approximating codimension $3$ embeddings, Ann. of Math. $(2)$ 95 (1972) 406

[25] E E Moise, Geometric topology in dimensions $2$ and $3$, Graduate Texts in Math. 47, Springer (1977)

[26] S Rickman, Quasiregular mappings, Ergebnisse der Math. und ihrer Grenzgebiete (3) 26, Springer (1993)

[27] C P Rourke, B J Sanderson, Introduction to piecewise-linear topology, Springer Study Edition (1982)

[28] T B Rushing, Topological embeddings, Pure and Applied Math. 52, Academic Press (1973)

[29] S Semmes, Chord-arc surfaces with small constant. II. Good parameterizations, Adv. Math. 88 (1991) 170

[30] S Semmes, Finding curves on general spaces through quantitative topology, with applications to Sobolev and Poincaré inequalities, Selecta Math. $($N.S.$)$ 2 (1996) 155

[31] S Semmes, Good metric spaces without good parameterizations, Rev. Mat. Iberoamericana 12 (1996) 187

[32] S Semmes, On the nonexistence of bi-Lipschitz parameterizations and geometric problems about $A_\infty$–weights, Rev. Mat. Iberoamericana 12 (1996) 337

[33] S Semmes, Some topics concerning homeomorphic parameterizations, Publ. Mat. 45 (2001) 3

[34] L Siebenmann, D Sullivan, On complexes that are Lipschitz manifolds, from: "Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977)" (editor J C Cantrell), Academic Press (1979) 503

[35] P Tukia, J Väisälä, Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980) 97

[36] J Väisälä, Lectures on $n$–dimensional quasiconformal mappings, Lecture Notes in Math. 229, Springer (1971)

[37] G A Venema, Approximating disks in $4$–space, Michigan Math. J. 25 (1978) 19

[38] G A Venema, Approximating codimension two embeddings of cells, Pacific J. Math. 126 (1987) 165

[39] J H C Whitehead, A certain open manifold whose group is unity, Quart. J. Math. Oxford $(2)$ 6 (1935) 268

[40] E C Zeeman, Unknotting spheres, Ann. of Math. $(2)$ 72 (1960) 350

Cité par Sources :