Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
The well-known tubular neighborhood theorem for contact submanifolds states that a small enough neighborhood of such a submanifold is uniquely determined by the contact structure on , and the conformal symplectic structure of the normal bundle. In particular, if the submanifold has trivial normal bundle then its tubular neighborhood will be contactomorphic to a neighborhood of in the model space .
In this article we make the observation that if is a –dimensional overtwisted submanifold with trivial normal bundle in , and if its model neighborhood is sufficiently large, then does not admit a symplectically aspherical filling.
Niederkrüger, Klaus 1 ; Presas, Francisco 2
@article{GT_2010_14_2_a1, author = {Niederkr\"uger, Klaus and Presas, Francisco}, title = {Some remarks on the size of tubular neighborhoods in contact topology and fillability}, journal = {Geometry & topology}, pages = {719--754}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2010}, doi = {10.2140/gt.2010.14.719}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.719/} }
TY - JOUR AU - Niederkrüger, Klaus AU - Presas, Francisco TI - Some remarks on the size of tubular neighborhoods in contact topology and fillability JO - Geometry & topology PY - 2010 SP - 719 EP - 754 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.719/ DO - 10.2140/gt.2010.14.719 ID - GT_2010_14_2_a1 ER -
%0 Journal Article %A Niederkrüger, Klaus %A Presas, Francisco %T Some remarks on the size of tubular neighborhoods in contact topology and fillability %J Geometry & topology %D 2010 %P 719-754 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.719/ %R 10.2140/gt.2010.14.719 %F GT_2010_14_2_a1
Niederkrüger, Klaus; Presas, Francisco. Some remarks on the size of tubular neighborhoods in contact topology and fillability. Geometry & topology, Tome 14 (2010) no. 2, pp. 719-754. doi : 10.2140/gt.2010.14.719. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.719/
[1] A remarkable symplectic structure, J. Differential Geom. 32 (1990) 533
, ,[2] Odd dimensional tori are contact manifolds, Int. Math. Res. Not. (2002) 1571
,[3] Contact homology of left-handed stabilizations and plumbing of open books
, ,[4] Minimal atlases of closed contact manifolds, from: "New perspectives and challenges in symplectic field theory", CRM Proc. Lecture Notes 49, Amer. Math. Soc. (2009) 73
, , ,[5] Three lectures on symplectic topology in Cala Gonone. Basic notions, problems and some methods, Rend. Sem. Fac. Sci. Univ. Cagliari 58 (1988) 27
,[6] New invariants of open symplectic and contact manifolds, J. Amer. Math. Soc. 4 (1991) 513
,[7] Classification of contact structures on $\mathbb{R}^3$, Internat. Math. Res. Notices (1993) 87
,[8] Geometry of contact transformations and domains: orderability versus squeezing, Geom. Topol. 10 (2006) 1635
, , ,[9] Introduction to the $h$–principle, Graduate Studies in Mathematics 48, American Mathematical Society (2002)
, ,[10] Planar open book decompositions and contact structures, Int. Math. Res. Not. (2004) 4255
,[11] Cabling and transverse simplicity, Ann. of Math. $(2)$ 162 (2005) 1305
, ,[12] Contact geometry, from: "Handbook of differential geometry Vol II", Elsevier/North-Holland, Amsterdam (2006) 315
,[13] An introduction to contact topology, Cambridge Studies in Advanced Mathematics 109, Cambridge University Press (2008)
,[14] Elliptic partial differential equations of second order, Classics in Mathematics, Springer (2001)
, ,[15] Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307
,[16] Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 9, Springer (1986)
,[17] Reflection principle and $J$–complex curves with boundary on totally real immersions, Commun. Contemp. Math. 4 (2002) 65
, ,[18] Contact fiber bundles, J. Geom. Phys. 49 (2004) 52
,[19] $J$–holomorphic curves and symplectic topology, American Mathematical Society Colloquium Publications 52, American Mathematical Society (2004)
, ,[20] Global models of contact forms, J. Math. Sci. Univ. Tokyo 11 (2004) 447
,[21] Une structure symplectique sur $\mathbb{R}^6$ avec une sphère lagrangienne plongée et un champ de Liouville complet, Comment. Math. Helv. 65 (1990) 623
,[22] The plastikstufe – a generalization of the overtwisted disk to higher dimensions, Algebr. Geom. Topol. 6 (2006) 2473
,[23] Every contact manifolds can be given a nonfillable contact structure, Int. Math. Res. Not. (2007)
, ,[24] A class of non-fillable contact structures, Geom. Topol. 11 (2007) 2203
,Cité par Sources :