Some remarks on the size of tubular neighborhoods in contact topology and fillability
Geometry & topology, Tome 14 (2010) no. 2, pp. 719-754.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The well-known tubular neighborhood theorem for contact submanifolds states that a small enough neighborhood of such a submanifold N is uniquely determined by the contact structure on N, and the conformal symplectic structure of the normal bundle. In particular, if the submanifold N has trivial normal bundle then its tubular neighborhood will be contactomorphic to a neighborhood of N ×{0} in the model space N × 2k.

In this article we make the observation that if (N,ξN) is a 3–dimensional overtwisted submanifold with trivial normal bundle in (M,ξ), and if its model neighborhood is sufficiently large, then (M,ξ) does not admit a symplectically aspherical filling.

DOI : 10.2140/gt.2010.14.719
Keywords: neighborhoods of contact submanifolds, fillability

Niederkrüger, Klaus 1 ; Presas, Francisco 2

1 Klaus Niederkrüger, Institut de mathématiques de Toulouse, Université Paul Sabatier – Toulouse III, 31062 Toulouse Cedex 9, France
2 Francisco Presas, ICMAT, CSIC, Facultad de Matematicas, Universidad Complutense de Madrid, Plaza de Ciencias no 3, 28040 Madrid, Spain
@article{GT_2010_14_2_a1,
     author = {Niederkr\"uger, Klaus and Presas, Francisco},
     title = {Some remarks on the size of tubular neighborhoods in contact topology and fillability},
     journal = {Geometry & topology},
     pages = {719--754},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2010},
     doi = {10.2140/gt.2010.14.719},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.719/}
}
TY  - JOUR
AU  - Niederkrüger, Klaus
AU  - Presas, Francisco
TI  - Some remarks on the size of tubular neighborhoods in contact topology and fillability
JO  - Geometry & topology
PY  - 2010
SP  - 719
EP  - 754
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.719/
DO  - 10.2140/gt.2010.14.719
ID  - GT_2010_14_2_a1
ER  - 
%0 Journal Article
%A Niederkrüger, Klaus
%A Presas, Francisco
%T Some remarks on the size of tubular neighborhoods in contact topology and fillability
%J Geometry & topology
%D 2010
%P 719-754
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.719/
%R 10.2140/gt.2010.14.719
%F GT_2010_14_2_a1
Niederkrüger, Klaus; Presas, Francisco. Some remarks on the size of tubular neighborhoods in contact topology and fillability. Geometry & topology, Tome 14 (2010) no. 2, pp. 719-754. doi : 10.2140/gt.2010.14.719. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.719/

[1] L Bates, G Peschke, A remarkable symplectic structure, J. Differential Geom. 32 (1990) 533

[2] F Bourgeois, Odd dimensional tori are contact manifolds, Int. Math. Res. Not. (2002) 1571

[3] F Bourgeois, O Van Koert, Contact homology of left-handed stabilizations and plumbing of open books

[4] Y Chekanov, O Van Koert, F Schlenk, Minimal atlases of closed contact manifolds, from: "New perspectives and challenges in symplectic field theory", CRM Proc. Lecture Notes 49, Amer. Math. Soc. (2009) 73

[5] Y Eliashberg, Three lectures on symplectic topology in Cala Gonone. Basic notions, problems and some methods, Rend. Sem. Fac. Sci. Univ. Cagliari 58 (1988) 27

[6] Y Eliashberg, New invariants of open symplectic and contact manifolds, J. Amer. Math. Soc. 4 (1991) 513

[7] Y Eliashberg, Classification of contact structures on $\mathbb{R}^3$, Internat. Math. Res. Notices (1993) 87

[8] Y Eliashberg, S S Kim, L Polterovich, Geometry of contact transformations and domains: orderability versus squeezing, Geom. Topol. 10 (2006) 1635

[9] Y Eliashberg, N Mishachev, Introduction to the $h$–principle, Graduate Studies in Mathematics 48, American Mathematical Society (2002)

[10] J B Etnyre, Planar open book decompositions and contact structures, Int. Math. Res. Not. (2004) 4255

[11] J B Etnyre, K Honda, Cabling and transverse simplicity, Ann. of Math. $(2)$ 162 (2005) 1305

[12] H Geiges, Contact geometry, from: "Handbook of differential geometry Vol II", Elsevier/North-Holland, Amsterdam (2006) 315

[13] H Geiges, An introduction to contact topology, Cambridge Studies in Advanced Mathematics 109, Cambridge University Press (2008)

[14] D Gilbarg, N S Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer (2001)

[15] M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307

[16] M Gromov, Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 9, Springer (1986)

[17] S Ivashkovich, V Shevchishin, Reflection principle and $J$–complex curves with boundary on totally real immersions, Commun. Contemp. Math. 4 (2002) 65

[18] E Lerman, Contact fiber bundles, J. Geom. Phys. 49 (2004) 52

[19] D Mcduff, D Salamon, $J$–holomorphic curves and symplectic topology, American Mathematical Society Colloquium Publications 52, American Mathematical Society (2004)

[20] A Mori, Global models of contact forms, J. Math. Sci. Univ. Tokyo 11 (2004) 447

[21] M P Muller, Une structure symplectique sur $\mathbb{R}^6$ avec une sphère lagrangienne plongée et un champ de Liouville complet, Comment. Math. Helv. 65 (1990) 623

[22] K Niederkrüger, The plastikstufe – a generalization of the overtwisted disk to higher dimensions, Algebr. Geom. Topol. 6 (2006) 2473

[23] K Niederkrüger, O Van Koert, Every contact manifolds can be given a nonfillable contact structure, Int. Math. Res. Not. (2007)

[24] F Presas, A class of non-fillable contact structures, Geom. Topol. 11 (2007) 2203

Cité par Sources :