Non-negative Legendrian isotopy in ST∗M
Geometry & topology, Tome 14 (2010) no. 1, pp. 611-626.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

It is shown that if the universal cover of a manifold M is an open manifold, then two different fibres of the spherical cotangent bundle STM cannot be connected by a non-negative Legendrian isotopy. This result is applied to the study of causality in globally hyperbolic spacetimes. It is also used to strengthen a result of Eliashberg, Kim and Polterovich on the existence of a partial order on Cont˜0(STM).

DOI : 10.2140/gt.2010.14.611
Keywords: Legendrian isotopy, causality

Chernov, Vladimir 1 ; Nemirovski, Stefan 2

1 Department of Mathematics, Dartmouth College, 6188 Kemeny Hall, Hanover, NH 03755, USA
2 Steklov Mathematical Institute, Gubkina 8, 119991 Moscow, Russia, Mathematisches Institut, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
@article{GT_2010_14_1_a13,
     author = {Chernov, Vladimir and Nemirovski, Stefan},
     title = {Non-negative {Legendrian} isotopy in {ST\ensuremath{*}M}},
     journal = {Geometry & topology},
     pages = {611--626},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2010},
     doi = {10.2140/gt.2010.14.611},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.611/}
}
TY  - JOUR
AU  - Chernov, Vladimir
AU  - Nemirovski, Stefan
TI  - Non-negative Legendrian isotopy in ST∗M
JO  - Geometry & topology
PY  - 2010
SP  - 611
EP  - 626
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.611/
DO  - 10.2140/gt.2010.14.611
ID  - GT_2010_14_1_a13
ER  - 
%0 Journal Article
%A Chernov, Vladimir
%A Nemirovski, Stefan
%T Non-negative Legendrian isotopy in ST∗M
%J Geometry & topology
%D 2010
%P 611-626
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.611/
%R 10.2140/gt.2010.14.611
%F GT_2010_14_1_a13
Chernov, Vladimir; Nemirovski, Stefan. Non-negative Legendrian isotopy in ST∗M. Geometry & topology, Tome 14 (2010) no. 1, pp. 611-626. doi : 10.2140/gt.2010.14.611. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.611/

[1] G Baumslag, A G Myasnikov, V Shpilrain, Open problems in combinatorial group theory, second edition, from: "Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001)", Contemp. Math. 296, Amer. Math. Soc. (2002) 1

[2] L Bérard-Bergery, Quelques exemples de variétés riemanniennes où toutes les géodésiques issues d'un point sont fermées et de même longueur, suivis de quelques résultats sur leur topologie, Ann. Inst. Fourier (Grenoble) 27 (1977) 231

[3] A L Besse, Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete 93, Springer (1978)

[4] M Bhupal, A partial order on the group of contactomorphisms of $\mathbb{R}^{2n+1}$ via generating functions, Turkish J. Math. 25 (2001) 125

[5] Y V Chekanov, Critical points of quasifunctions, and generating families of Legendrian manifolds, Funktsional. Anal. i Prilozhen. 30 (1996) 56, 96

[6] V Chernov, S Nemirovski, Legendrian links, causality and the Low conjecture, Geom. Funct. Anal. 19 (2010) 1320

[7] V V Chernov, Y B Rudyak, Linking and causality in globally hyperbolic space-times, Comm. Math. Phys. 279 (2008) 309

[8] V Colin, E Ferrand, P Pushkar, Positive isotopies of Legendrian submanifolds, preprint

[9] Y Eliashberg, M Gromov, Lagrangian intersection theory: finite-dimensional approach, from: "Geometry of differential equations", Amer. Math. Soc. Transl. Ser. 2 186, Amer. Math. Soc. (1998) 27

[10] Y Eliashberg, S S Kim, L Polterovich, Geometry of contact transformations and domains: orderability versus squeezing, Geom. Topol. 10 (2006) 1635

[11] Y Eliashberg, L Polterovich, Partially ordered groups and geometry of contact transformations, Geom. Funct. Anal. 10 (2000) 1448

[12] E Ferrand, On a theorem of Chekanov, from: "Symplectic singularities and geometry of gauge fields (Warsaw, 1995)", Banach Center Publ. 39, Polish Acad. Sci. (1997) 39

[13] H Geiges, An introduction to contact topology, Cambridge Studies in Advanced Mathematics 109, Cambridge University Press (2008)

[14] C Godbillon, Feuilletages, Progress in Mathematics 98, Birkhäuser Verlag (1991)

[15] F Laudenbach, J C Sikorav, Persistance d'intersection avec la section nulle au cours d'une isotopie hamiltonienne dans un fibré cotangent, Invent. Math. 82 (1985) 349

[16] R J Low, Causal relations, and spaces of null geodesics, DPhil thesis, University of Oxford (1988)

[17] R J Low, The space of null geodesics, from: "Proceedings of the Third World Congress of Nonlinear Analysts, Part 5 (Catania, 2000)", Nonlinear Anal. 47 (2001) 3005

[18] J Natário, P Tod, Linking, Legendrian linking and causality, Proc. London Math. Soc. $(3)$ 88 (2004) 251

[19] G Perelman, The entropy formula for the Ricci flow and its geometric applications

[20] G Perelman, Ricci flow with surgery on three-manifolds

[21] G Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds

[22] C Viterbo, Symplectic topology as the geometry of generating functions, Math. Ann. 292 (1992) 685

Cité par Sources :