Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
It is shown that if the universal cover of a manifold is an open manifold, then two different fibres of the spherical cotangent bundle cannot be connected by a non-negative Legendrian isotopy. This result is applied to the study of causality in globally hyperbolic spacetimes. It is also used to strengthen a result of Eliashberg, Kim and Polterovich on the existence of a partial order on .
Chernov, Vladimir 1 ; Nemirovski, Stefan 2
@article{GT_2010_14_1_a13, author = {Chernov, Vladimir and Nemirovski, Stefan}, title = {Non-negative {Legendrian} isotopy in {ST\ensuremath{*}M}}, journal = {Geometry & topology}, pages = {611--626}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2010}, doi = {10.2140/gt.2010.14.611}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.611/} }
TY - JOUR AU - Chernov, Vladimir AU - Nemirovski, Stefan TI - Non-negative Legendrian isotopy in ST∗M JO - Geometry & topology PY - 2010 SP - 611 EP - 626 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.611/ DO - 10.2140/gt.2010.14.611 ID - GT_2010_14_1_a13 ER -
Chernov, Vladimir; Nemirovski, Stefan. Non-negative Legendrian isotopy in ST∗M. Geometry & topology, Tome 14 (2010) no. 1, pp. 611-626. doi : 10.2140/gt.2010.14.611. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.611/
[1] Open problems in combinatorial group theory, second edition, from: "Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001)", Contemp. Math. 296, Amer. Math. Soc. (2002) 1
, , ,[2] Quelques exemples de variétés riemanniennes où toutes les géodésiques issues d'un point sont fermées et de même longueur, suivis de quelques résultats sur leur topologie, Ann. Inst. Fourier (Grenoble) 27 (1977) 231
,[3] Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete 93, Springer (1978)
,[4] A partial order on the group of contactomorphisms of $\mathbb{R}^{2n+1}$ via generating functions, Turkish J. Math. 25 (2001) 125
,[5] Critical points of quasifunctions, and generating families of Legendrian manifolds, Funktsional. Anal. i Prilozhen. 30 (1996) 56, 96
,[6] Legendrian links, causality and the Low conjecture, Geom. Funct. Anal. 19 (2010) 1320
, ,[7] Linking and causality in globally hyperbolic space-times, Comm. Math. Phys. 279 (2008) 309
, ,[8] Positive isotopies of Legendrian submanifolds, preprint
, , ,[9] Lagrangian intersection theory: finite-dimensional approach, from: "Geometry of differential equations", Amer. Math. Soc. Transl. Ser. 2 186, Amer. Math. Soc. (1998) 27
, ,[10] Geometry of contact transformations and domains: orderability versus squeezing, Geom. Topol. 10 (2006) 1635
, , ,[11] Partially ordered groups and geometry of contact transformations, Geom. Funct. Anal. 10 (2000) 1448
, ,[12] On a theorem of Chekanov, from: "Symplectic singularities and geometry of gauge fields (Warsaw, 1995)", Banach Center Publ. 39, Polish Acad. Sci. (1997) 39
,[13] An introduction to contact topology, Cambridge Studies in Advanced Mathematics 109, Cambridge University Press (2008)
,[14] Feuilletages, Progress in Mathematics 98, Birkhäuser Verlag (1991)
,[15] Persistance d'intersection avec la section nulle au cours d'une isotopie hamiltonienne dans un fibré cotangent, Invent. Math. 82 (1985) 349
, ,[16] Causal relations, and spaces of null geodesics, DPhil thesis, University of Oxford (1988)
,[17] The space of null geodesics, from: "Proceedings of the Third World Congress of Nonlinear Analysts, Part 5 (Catania, 2000)", Nonlinear Anal. 47 (2001) 3005
,[18] Linking, Legendrian linking and causality, Proc. London Math. Soc. $(3)$ 88 (2004) 251
, ,[19] The entropy formula for the Ricci flow and its geometric applications
,[20] Ricci flow with surgery on three-manifolds
,[21] Finite extinction time for the solutions to the Ricci flow on certain three-manifolds
,[22] Symplectic topology as the geometry of generating functions, Math. Ann. 292 (1992) 685
,Cité par Sources :