A cartesian presentation of weak n–categories
Geometry & topology, Tome 14 (2010) no. 1, pp. 521-571.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We propose a notion of weak (n + k,n)–category, which we call (n + k,n)Θ–spaces. The (n + k,n)Θ–spaces are precisely the fibrant objects of a certain model category structure on the category of presheaves of simplicial sets on Joyal’s category  Θn. This notion is a generalization of that of complete Segal spaces (which are precisely the (,1)Θ–spaces). Our main result is that the above model category is cartesian.

DOI : 10.2140/gt.2010.14.521
Keywords: $n$–categories, complete Segal spaces

Rezk, Charles 1

1 Department of Mathematics, University of Illinois at Urbana-Champaign, 273 Altgeld Hall, MC-382, 1409 W Green Street, Urbana, IL 61801
@article{GT_2010_14_1_a10,
     author = {Rezk, Charles},
     title = {A cartesian presentation of weak n{\textendash}categories},
     journal = {Geometry & topology},
     pages = {521--571},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2010},
     doi = {10.2140/gt.2010.14.521},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.521/}
}
TY  - JOUR
AU  - Rezk, Charles
TI  - A cartesian presentation of weak n–categories
JO  - Geometry & topology
PY  - 2010
SP  - 521
EP  - 571
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.521/
DO  - 10.2140/gt.2010.14.521
ID  - GT_2010_14_1_a10
ER  - 
%0 Journal Article
%A Rezk, Charles
%T A cartesian presentation of weak n–categories
%J Geometry & topology
%D 2010
%P 521-571
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.521/
%R 10.2140/gt.2010.14.521
%F GT_2010_14_1_a10
Rezk, Charles. A cartesian presentation of weak n–categories. Geometry & topology, Tome 14 (2010) no. 1, pp. 521-571. doi : 10.2140/gt.2010.14.521. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.521/

[1] J C Baez, J Dolan, Categorification, from: "Higher category theory (Evanston, IL, 1997)" (editors E Getzler, M Kapranov), Contemp. Math. 230, Amer. Math. Soc. (1998) 1

[2] C Barwick, Extended research statement (2007)

[3] C Berger, A cellular nerve for higher categories, Adv. Math. 169 (2002) 118

[4] C Berger, Iterated wreath product of the simplex category and iterated loop spaces, Adv. Math. 213 (2007) 230

[5] J E Bergner, A model category structure on the category of simplicial categories, Trans. Amer. Math. Soc. 359 (2007) 2043

[6] J E Bergner, Three models for the homotopy theory of homotopy theories, Topology 46 (2007) 397

[7] E Cheng, Higher dimensional categories: An illustrated guide book (2004)

[8] D Dugger, Universal homotopy theories, Adv. Math. 164 (2001) 144

[9] P S Hirschhorn, Model categories and their localizations, Math. Surveys and Monogr. 99, Amer. Math. Soc. (2003)

[10] A Hischowitz, C Simpson, Descente pour les $n$–champs

[11] M Hovey, Model categories, Math. Surveys and Monogr. 63, Amer. Math. Soc. (1999)

[12] A Joyal, Disks, duality, and $\Theta$–categories, Preprint (1999)

[13] A Joyal, M Tierney, Quasi-categories vs Segal spaces, from: "Categories in algebra, geometry and mathematical physics" (editors A Davydov, M Batanin, M Johnson, S Lack, A Neeman), Contemp. Math. 431, Amer. Math. Soc. (2007) 277

[14] T Leinster, A survey of definitions of $n$–category, Theory Appl. Categ. 10 (2002) 1

[15] J Lurie, On the classification of topological field theories

[16] C Rezk, A model for the homotopy theory of homotopy theory, Trans. Amer. Math. Soc. 353 (2001) 973

[17] Z Tamsamani, Sur des notions de $n$–catégorie et $n$–groupoïde non strictes via des ensembles multi-simpliciaux, $K$–Theory 16 (1999) 51

Cité par Sources :