Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We propose a notion of weak –category, which we call ––spaces. The ––spaces are precisely the fibrant objects of a certain model category structure on the category of presheaves of simplicial sets on Joyal’s category . This notion is a generalization of that of complete Segal spaces (which are precisely the ––spaces). Our main result is that the above model category is cartesian.
Rezk, Charles 1
@article{GT_2010_14_1_a10, author = {Rezk, Charles}, title = {A cartesian presentation of weak n{\textendash}categories}, journal = {Geometry & topology}, pages = {521--571}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2010}, doi = {10.2140/gt.2010.14.521}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.521/} }
Rezk, Charles. A cartesian presentation of weak n–categories. Geometry & topology, Tome 14 (2010) no. 1, pp. 521-571. doi : 10.2140/gt.2010.14.521. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.521/
[1] Categorification, from: "Higher category theory (Evanston, IL, 1997)" (editors E Getzler, M Kapranov), Contemp. Math. 230, Amer. Math. Soc. (1998) 1
, ,[2] Extended research statement (2007)
,[3] A cellular nerve for higher categories, Adv. Math. 169 (2002) 118
,[4] Iterated wreath product of the simplex category and iterated loop spaces, Adv. Math. 213 (2007) 230
,[5] A model category structure on the category of simplicial categories, Trans. Amer. Math. Soc. 359 (2007) 2043
,[6] Three models for the homotopy theory of homotopy theories, Topology 46 (2007) 397
,[7] Higher dimensional categories: An illustrated guide book (2004)
,[8] Universal homotopy theories, Adv. Math. 164 (2001) 144
,[9] Model categories and their localizations, Math. Surveys and Monogr. 99, Amer. Math. Soc. (2003)
,[10] Descente pour les $n$–champs
, ,[11] Model categories, Math. Surveys and Monogr. 63, Amer. Math. Soc. (1999)
,[12] Disks, duality, and $\Theta$–categories, Preprint (1999)
,[13] Quasi-categories vs Segal spaces, from: "Categories in algebra, geometry and mathematical physics" (editors A Davydov, M Batanin, M Johnson, S Lack, A Neeman), Contemp. Math. 431, Amer. Math. Soc. (2007) 277
, ,[14] A survey of definitions of $n$–category, Theory Appl. Categ. 10 (2002) 1
,[15] On the classification of topological field theories
,[16] A model for the homotopy theory of homotopy theory, Trans. Amer. Math. Soc. 353 (2001) 973
,[17] Sur des notions de $n$–catégorie et $n$–groupoïde non strictes via des ensembles multi-simpliciaux, $K$–Theory 16 (1999) 51
,Cité par Sources :